Как замерить сопротивление изоляции


Измерение сопротивления изоляции: полное руководство

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Внешние загрязнения:

 

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

 

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Состояние изоляции

<2

Проблемное

От 2 до 4

Хорошее

> 4

Отличное

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Состояние изоляции

<1,25

Неудовлетворительное

<1,6

Нормальное

>1,6

Отличное

 

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

DD (нормы)

Состояние

> 7

Очень плохое

От 4 до 7

Плохое

От 2 до 4

Сомнительное

<2

Нормальное

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

 

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Нормы испытательного напряжения для кабелей/оборудования

Рабочее напряжение кабеля/оборудования

Нормы испытательного напряжения постоянного тока

От 24 до 50 В

От 50 до 100 В постоянного тока

От 50 до 100 В

От 100 до 250 В постоянного тока

От 100 до 240 В

От 250 до 500 В постоянного тока

От 440 до 550 В

От 500 до 1000 В постоянного тока

2400 В

От 1000 до 2500 В постоянного тока

4100 В

От 1000 до 5000 В постоянного тока

От 5000 до 12 000 В

От 2500 до 5000 В постоянного тока

> 12 000 В

От 5000 до 10 000 В постоянного тока

 

В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Безопасность при тестировании изоляции

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Часто задаваемые вопросы

 

Результат моих измерений – x МОм. Это нормально?

Какое должно быть сопротивление изоляции - на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Как выбрать измеритель сопротивления изоляции (мегомметр)?

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Примеры измерений сопротивления изоляции

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на электроинструменте

Измерение изоляции на трансформаторе

Измерение сопротивления изоляции трансформатора производят следующим образом:

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

 

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

 

c. Между высоковольтной обмоткой и низковольтной обмоткой

 

d. Между высоковольтной обмоткой и землей

 

e. Между низковольтной обмоткой и землей

 

Подробнее о приборах для проверки изоляции высоковольтных кабелей смотрите в этом разделе.

 

методика измерения, используемые приборы, как провести, пошаговая инструкция

Сопротивление изоляции — важный параметр, без нормального показателя которого невозможна безопасная работа электроприборов. Что такое замер сопротивления, как проводить эту процедуру, как проверить электропроводку на этот показатель в электролаборатории и многое другое далее.

Что это такое

Сопротивление изоляции — показатель, который влияет на безопасность работы электрических установок. Также это главный параметр во всех кабелях и проводах, поскольку при эксплуатации они всегда подвергаются разным физическим и другим воздействиям. Согласно понятию из учебника физики это соотношение напряжения, которое приложено к диэлектрическому элементу к току, протекающему через этот элемент.

Сопротивление изоляции что это

Несмотря на то, что кабели сделаны из качественного и долговечного материала, он может выйти из строя вследствие:

  • высокого напряжения и солнечного света;
  • механического повреждения и постановки неправильного температурного режима;
  • неблагоприятной среды эксплуатации.

Чтобы точно выяснить причины повреждений в цепи кабеля или проверить возможность в дальнейшем эксплуатировать изоляцию, необходимо сделать замер сопротивления изоляции.

Обратите внимание! В случае визуального обнаружения изоляции, выполнение измерений уже не требуется. Осуществляя проведение замеров сопротивления изоляции мегаомметром, можно убрать неисправность, предотвратить пожар и аварийную ситуацию, убрать чрезмерно изношенное устройство, устранить короткие замыкания с возможными ударами тока людей.

Поврежденный кабель от солнечного света

Как обследовать электропроводку

Сделать обследование электрической проводки можно только после осмотра ее целостности. Так, на проводных изгибах не должно быть поломанных, потресканных и раскрошенных частей. Если после визуального просмотра, не были выявлены предпосылки того, чтобы заменить кабель, необходимо сделать измерение сопротивления изоляции. Для этого нужно воспользоваться мегаомметром.

Исследование проводки

Согласно правилам устройства электрических установок, в сети не должно быть сопротивление меньше 0,5 МОм, чтобы можно было правильно провести испытание с напряжением в тысячу вольт.

Кроме того, исследуется электропроводка в качестве профилактики. К примеру, изоляционное сопротивление нужно проверять каждые три года по правилам технической эксплуатации электрических установок. Где есть особо опасные объекты и наружные установки, проверку делают раз в год.

Обратите внимание! При начале работы необходимо сделать подсчет общей мощности потенциальных установленных электрических приборов. Исходя из данной информации, необходимо вычисление сечения кабели по показателям мощности. Далее необходимо сравнить получившуюся цифру с той, что равна сечению кабеля. Если она меньше, значит нужно в срочном порядке менять всю электрическую проводку.

Потом нужно проверить всю скрытую проводку. На части изоляции не должно быть никаких повреждений. Провода должны иметь специальные клеммы.

Обязательно необходимо осуществить проверку распределительного щита. Он должен быть правильным образом собран. В противном случае, когда будут подключены все электроприборы к щитку, автомат будет выбивать из-за предельной нагрузки.

Просмотр целостности кабеля как необходимость до начала его проверки

Шкала допустимого сопротивления

Как правило, каждая шкала на предприятии своя, в зависимости от оборудования. Далее даны примеры допустимого изоляционного сопротивления электрических установок, аппаратов, цепей и проводок:

  1. Электроустановка 12 ватт = менее 0,5 МОм;
  2. Аппарат напряжения от 42 до 380 ватт = менее 0,5 МОм;
  3. Электрический инструмент ручного типа в виде трансформатора, переносного светильника = менее 0,5МОм, а в напряжении 2 МОм;
  4. Бытовая стационарная электроплита = 1МОм;
  5. Кран и люфт = 0,5МОм;
  6. Силовая и осветительная электропроводка, распределительная установка, щиток и токопровод = 0,5 МОм;
  7. Вторичная управленческая цепь защиты измерения или сигнализации = 1 МОм и выше;
  8. Цепь управления, цепь питания и цепи напряжения — 1 МОм и выше.

Замер сопротивления изоляции кабеля

Замер сопротивления изоляции электропроводки происходит около двух точек электрической установки, характеризующей утечку при подаче напряжения в сети. Результат — показатель, выражаемый в мегаомах. Измерение осуществляется при помощи мегаомметра, который исследует утечку тока, возникающую при действии регулярно поступающего напряжения к электрической установке.

Современными мегаомметрами выдаются разные уровни напряжения, чтобы испытать различное оборудование. В итоге, обязательная часть проверки цепи — изучение изоляционного сопротивления.

Принцип измерения показателя

Приборы для измерений

Сегодня измерением сопротивления изоляции в кабелях занимаются мегаомметры, лучшие из которых М — 4100, ЭСО 202 / 2Г, MIC — 30, MIC — 1000 и MIC-2500. Поскольку электротехника, как и мир, не стоит на месте, появляются новые устройства и обновления старых.

Мегаомметр внешний вид

Мегаомметр

Мегаомметр является специальным прибором, используемым профессиональными электриками, чтобы измерять электросети и приборы. Отличается от омметра тем, что может измерять на более высоком напряжении. Чтобы проверять сопротивление, прибором напряжение генерируется самостоятельно благодаря встроенному механическому генератору или батареи.

Обратите внимание! Конструкция его проста: источник питания, к примеру, генератор переменного тока, имеющий выпрямительный мост, и измерительный механизм.

Применение его широкое. Его используют, чтобы выявить повреждения в электросетях перед тем, как начать эксплуатировать ее, а также обнаружить места, где уже создалась аварийная ситуация. Чтобы проверить изоляцию кабеля в трансформаторной, электродвигательной части и любых устройствах, обладающих электрической обмоткой и изоляцией. Главное предназначение в измерении изоляционного сопротивления кабелей.

Благодаря испытаниям, можно понять, где находятся слабые места в электрических сетях. Показатели, снимаемые с мегаомметра, используются, чтобы определить степень изоляционной изношенности для предотвращения неожиданных и нежелательных случаев возгорания.

Конструкция мегаомметра

Принцип работы устройства прост. Он подает напряжение на кабельный участок, который и проверяется в итоге на наличие нормального поступления тока. При утечках, показатели попадают на панель, откуда пользователь и делает выводы. Если утечка больше допустимого значения, значит, речь идет о повреждении изоляции и появления короткого замыкания, недопустимого для того, чтобы была нормальная эксплуатация электрических сетей. В противном случае, кабели могут загореться.

Укомплектован каждый мегаомметр на 1000 и 2500 вольт гибкими медными проводниками, достигающими в длину до трех метров. Каждый прибор оснащен наконечниками в виде крокодила.

Обратите внимание! Отличаются устройства друг от друга модели дизайном и устройством. Аналоговые измерительные устройства обладают динамо машиной, которая вращением специальной ручки делает выработку напряжения, производящего изоляционные замеры. Также есть приборы с аналоговым табло и механической стрелкой. Современные модели оснащены аккумуляторными батареями и блоком питания, имеют цифровое табло, которое отображает изоляционные показатели с памятью.

Аналоговая модель

Инструкция по технике безопасности

Вся измерительная работа сводится к тому, что используется мегомметр для изучения показателя сопротивления при напряжении до 1000 вольт. При рассмотрении светильников, до работы с ними, отключается напряжение, они выключаются из сети. При применении газоразрядных ламп, можно не выкручивать, а только убрать стартеры.

Инструкция при работе с мегаомметром

Важно до начала контрольных измерений проверить прибор, определив показания при разомкнутом и замкнутом проводнике. В первом случае должно появится бесконечное сопротивление, а во втором случае — значение около нуля.

Затем необходимо обесточить кабель. Чтобы убедиться в том, что напряжение отсутствует, нужно использовать указатель напряжения, испытанный на подключенном к участку цепи электрической установки.

Потом нужно заземлить токоведущие жила кабеля и при измерении его надеть диэлектрического вида резиновые защитные перчатки.

Обратите внимание! Прикасаться к токоведущим элементам запрещено!

Сопротивление можно проверить только по отдельной фазе. Если есть отрицательный результат, необходима проверка изоляции в участке фазы и земли.

Выполняя измерения, необходимо полное следование инструкции, разработанной на предприятии. Воспрещено начинать работу, не убедившись в том, что отсутствует напряжение. Коммутация должна быть осуществлена только в том случае, если обесточены токоведущие части и использованы средства защиты.

Возгорание как следствие отсутствия проверки кабелей

В целом, сопротивление изоляции — параметр, который нужно измерять при выходе из строя кабели или в качестве профилактики при помощи мультиметра и других доступных способов. Важно при этом полностью следовать инструкции и соблюдать технику безопасности, чтобы все измерения проходили без ущерба для здоровья.

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подборка видео по теме

Как измерить сопротивление изоляции - Всё о электрике

Как измерить сопротивление изоляции

Безопасность в процессе эксплуатации электрооборудования и быстрое устранение проблем в проводке невозможны без своевременной и грамотной диагностики. Для этого нужно знать, как измерить сопротивление изоляции по определенной методике. Тестируемая величина относится к главным параметрам состояния защитного слоя.

Для выполнения подобных мероприятий есть несколько способов. Каким прибором измеряют сопротивление изоляции для получения наиболее достоверной информации? Сегодня мы поговорим о применении самых популярных устройств, используемых для этих целей.

Как измерить сопротивление изоляции мультиметром

Большой диапазон вариантов использования мультиметра обусловлен особенностями его конструкции. Устройство с достаточной точностью справится с тестированием самых разных типов деталей и предохранителей, катушек и конденсаторов.

Расположение обозначений на корпусе варьируется в зависимости от модели, но для нашего случая обязательно должен быть символ «Ω», соответствующий измеряемому сопротивлению. На панели указано несколько пределов для проводимого тестирования и переключатель ручного формата. Все обозначения – это буквенные или цифровые символы.

Основные показатели в процессе измерения

Предположим, что ориентировочные параметры измерения составляют 1 кОм. В процессе проверки на дисплее прибора может быть показана единица, что означает для данной детали более высокое значение сопротивления. Переустанавливаем режим позиции тестера на 1 степень выше. На снимке ниже это равняется 20 кОм. В таком положении следует сделать новое измерение.

Приступая к работе, важно учитывать запрет на касание щупов и выводов измеряемых элементов, ведь в таком случае объективные данные будут искажаться по причине показа суммарного сопротивления тестируемой детали и тела человека.

В чем особенности данного процесса

Некоторые аспекты работы влияют на корректность полученной информации:

  • при тестировании впаянных деталей необходимо один вывод отсоединить от платы;
  • проверить щупы на отсутствие дефектов и повреждений способом их прикладывания друг к другу;
  • выполнить демонтаж многовыводных деталей для гарантии правильного определения их исправности;
  • аккумуляторный источник питания в тестере при разрядке искажает данные измерений.

Все указанные в таблицах или маркированные параметры имеют определенный диапазон допусков, обычно в пределах ± 10%. Приведем пример – для элемента с номинальными характеристиками сопротивления 1 Мом хорошими будут все результаты от 990 кОм до 1,1 Мом.

Как происходит проверка изоляции

Такую процедуру выполняют только в помещениях с плюсовой температурой или в теплую погоду. Это обусловлено возможностью появления кристалликов льда во внутренней части оплетки кабеля. Такие образования относятся к не обладающим проводимостью диэлектрикам. Тестеры их просто не учитывают, а ведь после оттаивания появившаяся влага отрицательно сказывается на состояние кабеля.

Цифровые модели мультиметров имеют несколько секций, выбор которых осуществляется вручную. Подбирается нужный предел измерения после ориентировочной оценки параметров проверяемой цепи. Самые популярные модификации T83x, M83x, MAS83x оснащены пятью вариантами тестирования.

Как измерить сопротивление изоляции мегаомметром

В состав любого образца прибора входят генератор в токовыпрямителем и предназначенный для измерений специальный механизм. Мегаомметры классифицируются по категориям согласно номинальным характеристикам напряжения.

Для устройств любого типа необходимо придерживаться определенных условий на подготовительной стадии:

  • контрольная проверка прибора, выполняемая при находящихся в разомкнутом положении концах жил, при этом указатель находится у значка бесконечности. Замыкании проводов сопровождается приближением стрелки к цифре 0;
  • специальным устройством подтверждается отключение напряжения;
  • обязательное заземление токопродника, снимающееся после установки мегаомметра.

Категорически запрещено прикосновение к токоведущим участкам.

Несколько моментов требуют повышенного внимания в отношении изоляционного слоя элементов, предназначенных для эксплуатации в режиме до 1000 В:

  1. Изоляция защитных и рабочих нулевых проводников должна равняться аналогичному показателю фазных элементов.
  2. Выполняется отсоединение нулевых проводников от заземляющих элементов со стороны приемника и источника питания.

Вращение ручки устройства происходит со скоростью 120 об/мин для обеспечения устойчивого положения стрелки.

Для проводников более 1000 В избежать потенциальных неточностей тестирования из-за присутствия на изоляционном слое токов утечки можно способом накладки экранных колец на измеряемый участок.

Устройство подсоединяется со стороны проверки к жилам после завершения мероприятий, предназначенных для снятия напряжения. Согласно рекомендациям ПУЭ с другой стороны нужно развести жилы на определенное правилами расстояние. Для обеспечения безопасности в этой зоне находится один из работников, а по периметру работ вывешиваются предупредительные плакаты.

Затем поочередно проверяется каждая жила подсоединением к ней одного щупа мегаомметра, второй при этом подключен к заземлению. Пара свободных от проверки жил заземляется. Рекомендованная длительность тестирования – 1 минута.

Кабельные контрольные системы

Единственное отличие применяемой в этом случае технологии от вышерассмотренных, заключается в определении наличия напряжения в токопроводнике на предварительном этапе и проверке прибора в диапазоне 500-2500 вольт. Для этого свободные жилы соединяются и подсоединяются к заземлению, а выходы прибора подключаются к концевой части кабеля и заземляющему контуру.

Периодичность проведения проверок соответствует прописанным для оборудования периодам .

Что такое измерение сопротивления изоляции и почему это важно

Как любое оборудование, техника, со временем из строя начинают выходить и электрические кабели различных видов. Одной из методик определение запаса прочности кабеля и выявления дефектов является измерение сопротивления изоляции. В этой статье рассказывается о том, что это, когда и как оно проводится.

Обследование электропроводки

В каждой организации, в ведении которой находится электроустановки, должен быть ответственный за электрохозяйство. В его обязанности входит составление планово-предупредительных работ по ремонту этого оборудования, а также проведения периодических испытаний и измерений, обследования электропроводки. Периодичность таких измерений, как правило, составляется на основе требований ПТЭЭП. Например, по поводу измерения сопротивления изоляции там сказано, что испытания стоит проводить 1 раз в 3 года.

Что такое измерение сопротивления изоляции

Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.

Допустимое сопротивление для различного оборудования

Основным руководящим документом является ПТЭЭП, в котором приводится периодичность испытаний, величина испытательного напряжения и норма значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37). Ниже приводится выдержка из документа.

Не стоит путать сопротивление электрических кабелей с сопротивлением коаксиального кабеля и волновым сопротивлением кабеля, т.к. это относится к радиотехнике и там действуют другие принципы подхода к допустимым значениям.

Вопрос электробезопасности

Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:

U – фазное напряжение электроустановки;

RИЗ – сопротивление изоляции электрооборудования;

RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.

Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.

При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Приборы для проведения измерений

Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).

Измерение сопротивления изоляции кабеля – ответственная процедура, от правильности выполнения которой, зависит безопасность, как людей, так и оборудования. Поэтому не стоит пренебрегать этой несложной, но полезной операции. Это поможет сэкономить немало средств.

Как измерить сопротивление изоляции кабеля?

Какие приборы используют?

Прежде чем приступать к работе, нужно замерить температуру воздуха окружающей среды. Для чего это необходимо? Если кабельная линия во время отрицательной температуры будет иметь частицы воды, то они превращаются под действием мороза во льдинки, а лед – это диэлектрик, который не имеет проводимости. Поэтому когда сопротивление будет измеряться при отрицательной температуре, то эти льдинки обнаружены не будут.

Затем для того чтобы осуществит замер изолирующего слоя проводки (ее сопротивление), необходимо обладать специальными приборами и средствами для диагностики. Измерить сопротивление можно специальным прибором, который называется мегаомметром (на фото ниже).

Мегаомметром можно замерить сопротивление на напряжение 2500 В (изоляция низковольтных и высоковольтных линий). Измерение происходит на напряжение 500–2500 В контрольных силовых линий (цепи управления, цепи питания, короткозамыкатели и т. д.).

Такие приборы должны каждый год проходить государственную поверку, в результате которой ставится штамп, где указывается серийный номер и дата, когда необходимо пройти следующую поверку. Каждый кабель имеет свои нормы, ГОСТ и ПУЭ, согласно которым проводятся проверки и испытания проводов.

Методика проведения испытаний

Прежде чем осуществить измерение сопротивления изоляции проводов и кабелей следует выполнить следующие действия:

  1. Проверить состояние прибора. Для этого следует проверить направление стрелки при разомкнутых (стрелка показывает на бесконечность) и сомкнутых (показывает на ноль) проводах.
  2. Проверить отсутствие питания. Провод не должен быть под напряжением.
  3. Заземлить кабель, который будут испытывать.

Измерение отличается в зависимости от классификации силовых линий, но эти отличия незначительные. Например, контрольный кабель имеет свою отличительную особенность: для того, чтобы измерить сопротивление, провод не нужно отсоединять от схемы.

Изоляция приборов проверяется с помощью специальных устройств, к которым во время испытаний прикасаться запрещено. Показания следует снимать только тогда, когда стрелка прибора примет устойчивое положение. Измерение осуществляется в течение одной минуты. С электронными приборами дела обстоят быстрее и результат выводится сразу на экран. Все данные следует записать в блокнот.

После того как все данные были получены, необходимо составить акт и протокол испытания. В первую очередь следует сравнить полученные значения с существующими нормами и требованиями. Затем сделать вывод: пригоден ли кабель для дальнейшей эксплуатации. И только после этого составить протокол измерения сопротивления изоляции кабеля. Образец протокола предоставлен на фото ниже:

Более подробно о том, как пользоваться мегаомметром, вы можете узнать из нашей статьи!

Как часто проводят замеры?

В организациях небольших размеров сопротивление измеряют с периодичностью один раз в три года (согласно ГОСТу и ПТЭЭП). Изоляция электропроводки фиксируется в протоколе, в котором помимо замеров указывается и проверка исправности УЗО.

Измерение сопротивления изоляции на объектах с повышенной опасностью должны проводиться каждый год. Это такие помещения, где присутствует повышенная влажность или высокая температура. На промышленных предприятиях такой замер позволит предотвратить или избежать остановки оборудования. После того как был осуществлен осмотр оборудования составляется специальный отчет, в котором указывается полностью состояние электроустановок.

Измерение следует проводить согласно установленным срокам. Ведь благодаря этому можно заранее избежать различных аварийных ситуаций, которые могут иметь серьезные последствия. Также несвоевременная проверка несет за собой штрафы, которые накладывают соответствующие органы.

Ниже представлена схема периодичности проверок в зависимости от классификации и категории помещения:

Кто проводит проверку и зачем это нужно?

Для того чтобы измерить сопротивление необходимо иметь специальное разрешение и доступ. Исходя из этого, кабель могут испытывать только специальные компании и организации, которые имеют квалифицированных сотрудников. Они должны пройти соответствующее обучение и получить требуемый разряд по электробезопасности.

Проводить замер необходимо для того, чтобы заранее выявить повреждения в оборудовании. Ведь изоляция играет значительную роль в безопасности работы с электрооборудованием. Если кабель или провод поврежден, то значит электроустановка становится опасной при работе. Ведь провод или кабель могут загореться и стать причиной пожара. Если заранее проверить кабель на исправность изолирующего слоя, это предотвратит от таких неприятностей, как:

  • преждевременный выход из строя оборудования;
  • короткое замыкание проводки;
  • поражение током работника;
  • аварийные ситуации различного характера.

Именно поэтому очень важно проводить измерение сопротивления изоляции кабеля. Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, как измерить сопротивление изоляции проводов и кабелей. Надеемся, предоставленная инструкция была для вас полезной и интересной!

Наверняка вы не знаете:

{SOURCE}

Сопротивление изоляции: методика измерения, используемые приборы

Как любое оборудование, техника, со временем из строя начинают выходить и электрические кабели различных видов. Одной из методик определение запаса прочности кабеля и выявления дефектов является измерение сопротивления изоляции. В этой статье рассказывается о том, что это, когда и как оно проводится.

Обследование электропроводки

В каждой организации, в ведении которой находится электроустановки, должен быть ответственный за электрохозяйство. В его обязанности входит составление планово-предупредительных работ по ремонту этого оборудования, а также проведения периодических испытаний и измерений, обследования электропроводки. Периодичность таких измерений, как правило, составляется на основе требований ПТЭЭП. Например, по поводу измерения сопротивления изоляции там сказано, что испытания стоит проводить 1 раз в 3 года.

Что такое измерение сопротивления изоляции

Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.

Допустимое сопротивление для различного оборудования

Основным руководящим документом является ПТЭЭП, в котором приводится периодичность испытаний, величина испытательного напряжения и норма значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37). Ниже приводится выдержка из документа.

 

Не стоит путать сопротивление электрических кабелей с сопротивлением коаксиального кабеля и волновым сопротивлением кабеля, т.к. это относится к радиотехнике и там действуют другие принципы подхода к допустимым значениям.

Вопрос электробезопасности

Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:

U – фазное напряжение электроустановки;

RИЗ – сопротивление изоляции электрооборудования;

RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.

Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.

При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Приборы для проведения измерений

Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).

Итог

Измерение сопротивления изоляции кабеля – ответственная процедура, от правильности выполнения которой, зависит безопасность, как людей, так и оборудования. Поэтому не стоит пренебрегать этой несложной, но полезной операции. Это поможет сэкономить немало средств.

Как пользоваться мегаомметром и его помощью замерить сопротивление изоляции

Многие начинающие электрики задаются вопросом, как пользоваться мегаомметром и что собой представляет этот измерительный электроприбор. О том, какие параметры имеет аппарат, каков принцип его работы, область применения и другое далее.

Что это такое

Мегаомметр является специальным измерительным прибором, используемым профессиональными электриками, для того чтобы вычислять электросети и электроприборы. Отличается от омметра работой с высоким напряжением. Напряжение генерируется самостоятельным образом встроенным механическим генератором или батареей. Величина его равна 100-2500 вольт. Выпускается в двух вариантах — в виде индукторного и безындукторного аппарата.

Мегаомметр в помощь электрикам

Он является универсальным переносным электродвигательным устройством, который бывает как ручным, цифровым, аналоговым или электронным, так и механическим и высоковольтным.

Обратите внимание! Стоит указать, что первая модель была изобретена с ручкой. Сегодня самыми стильными являются электронные измерительные модели.

Полное понятие из области электродинамики

Технические характеристики

Современный измерительный мегаомметр состоит из электромеханического генератора, имеющего ручной привод, или из электронного инвертора с частью выпрямителя, который питается от того, что в прибор встроен аккумулятор или у него есть сменные гальванические элементы. Как индикатор используется стрелочный логометр или жки.

Что касается диапазона измерений, есть модели от 0 до 200 кОм. Масса колеблется от 1 до 2,2 килограммов. Габариты примерно такие: длина 210-220, ширина 140-156, а высота — 61-250 миллиметров.

Стоит отметить, что точные параметры у каждого прибора разные из-за отличного внешнего и внутреннего исполнения. В некоторых моделях есть табло со школой и механической стрелкой, где-то имеется аккумуляторная батарея или блок питания.

Технические характеристики цифрового электроприбора Мегом 300

Принцип работы

Работает измерительный аппарат очень просто. Напряжение попадает на испытуемый электросетевой участок, чтобы проверить, как произолированы кабели. В зависимости от того, какая номинальная нагрузка у устройства, используется конкретная энергия. До испытания выбирается прибор, подходящий к сети.

То есть, работа с мегаомметром выполняется на законе Ома. Он подает ток на кабельный участок для проверки изоляции. Показатели того, что утечка происходит, возвращаются на прибор. Согласно этим данным делается вывод о том, нормально ли работает кабель или есть проблемы. При большом значении утечки, изоляция повреждена. Тогда может произойти короткое замыкание. Стоит отметить, что неисправность лучше убрать сразу, поскольку в любой момент может произойти кабельное возгорание при отсутствии работы автоматики контактного отключения.

Принцип работы устройства

Правила работы

Мегаомметр — травмоопасный аппарат из-за высокого напряжения. Работать с ним может только тот человек, который имеет знания и опыт.

Начинать работу с мегаомметром можно только обученным людям и знающим технику безопасности. Работа в электрических установках, где напряжение больше 1000 вольт, производится с разрешительной документацией, то есть наряд-допуском. При этом выдача документа для нескольких работ не разрешается. Также выполнение трудовой деятельности при подобном сетевом напряжении разрешается людям, которые имеют третью и четвертую группу электробезопасности.

Обратите внимание! До начала необходимо проверить целостность аппарата. В момент работы с устройством необходимо использовать диэлектрические перчатки и ни в коем случае не прикасаться к токоведущим элементам. После деятельности, необходимо снимать остаток заряда заземлением.

Соблюдение техники безопасности как одно из главных правил работы с электроприбором

Где используется

Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр. Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики. Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.

Применение в условиях промышленности как основная сфера

Как подключить

Каждая модель устройства имеет свою выходную величину напряжения, по этой причине для эффективного испытания изоляции либо замера ее сопротивления, необходим правильный подбор мегаомметра.

Чтобы проверить кабельную изоляцию, необходимо сформировать случай, при котором на участок энергия будет подана выше номинальной, но в пределе, описанной в техническом документе. К примеру, если напряжение подается в количестве 500, то необходимо немного превысить эту величину.

Длительность измерения сопротивления изоляции мегаомметром, обычно должна быть не более 30 секунд. Это нужно, чтобы точно можно было выявить дефекты, а также исключить их последующее появление при сетевых перепадах.

Основой измерений является подготовка с выполнением и финальным этапом. На каждом этапе происходят свои манипуляции, которые нужны, чтобы достигнуть поставленную цель.

Обратите внимание! Подготавливая работу, нужно понимать действия, изучить электрическую установку в схематичном виде для исключения возможной поломки и обеспечения безопасности.

Делая начало работы, следует осуществить проверку прибора на исправность. Далее нужно подсоединить переносное заземление к земляному контуру, проверить и обеспечить отключение напряжения на участке, установить переносной вид заземления, собрать схему измерения, убрать поступающую энергию и остаток заряда. После отключить провод соединения.

На финальном этапе восстанавливаются разобранные цепочки, снимаются шунты и закоротки, а также подготавливаются схемы для рабочего режима. Позднее документируются результаты измерений слоя изоляции в проверочном изоляционном акте

Профессиональное подключение мегаомметра по инструкции

Как пользоваться

Чтобы правильно проводить испытания важно сделать правильное выставление измерительных диапазонов и тестовой энергии. Самый простой метод этого выполнения, использовать специальные таблицы с указанием параметров для разных тестируемых объектов.

Важно понимать, что во время тестирования необходимо использование диэлектрических перчаток. Также необходимо убрать посторонних с вывешиванием соответствующих предупреждающих плакатов. Во время подключения щупов, необходимо только касаться тех частей, которые заизолированы. До измерения следует сделать переносной вид заземления для отключения контрольных кабелей. При этом сами измерения нужно проводить при сухой изоляции до превышения допустимых пределов влажности.

Использование аппарата по руководству к эксплуатации как возможность его правильной работы и отсутствия поломок

Как прозвонить кабель

Проверить одножильный кабель можно несколькими манипуляциями, выставив тестовый вид напряжения. Первый щуп должен быть прицеплен на часть жилы, а второй должен быть прицеплен на броню. После этого будет подано напряжение. Если не имеется брони, то необходима земляная жила. При нахождении показаний до 0,5 мОм, значит кабель неизношен и его можно использовать дальше и не заменять.

Обратите внимание! Прозванивая многожильный кабель, нужно осуществлять проверку каждой жили, а из остальных полупроводников сделать сбор единого жгута. Чтобы получить достоверные результаты, необходимо обеспечение хорошего контакта.

Правильный прозвон кабеля путем аппарата

Проверка изоляции

Проверка изоляции — еще одна функция измерительного прибора. Изоляция позволяет защитить жилу от соприкосновения с другой жилой. Характеристика изоляционного качества — сопротивление. Это измеряется в омах с производными. Сопротивление является величиной, которая обратна производимости. То есть она может показать возможность непропуска электротока.

Чем меньше изоляция, тем больше возможность нахождение тока пути и распространение из кабеля к токопроводящим поверхностям и материалам. То есть может быть изоляционный кабельный пробой. Важно понимать, что изоляция стареет, ухудшается из-за влажности и механического повреждения. Также ухудшается из-за воздействия агрессивной внешней среды.

Проверка изоляции как одно из условий использования

Как проверить мегаомметр на исправность

Осуществить проверку мегаомметра на исправность необходимо по следующему способу. К выводам устройства сделать подключение проводов и закоротить выходы. Потом подать энергию и проследить за результатами. Исправный прибор покажет ноль. Потом разъединить и попробовать заново. Во второй раз должна появиться бесконечность. Это показатель — воздушный промежуток.

Неисправности мегаомметра

Неисправности заключаются в отсутствии горения индикаторного табло измерительных результатов в момент включения омметра питания. Также они заключаются в нестабильности измерительных результатов. Причина этих явлений в перегорании предохранителя, неисправности кабеля сетевого питания, ненадежном заземлении и ненадежном контактировании с измерительным объектом.

Неправильная эксплуатация прибора и заводской брак как неисправность

Ремонт мегаомметра

Ремонт заключается в замене предохранителя, устранении неисправности кабельного повреждения, восстановления надежного заземления и достижения надежного контакта для измерительного объекта. Стоит отметить, что техническое обслуживание является лучшей профилактикой для бесперебойной работы. Также оно нужно, чтобы поддержать эксплуатационную надежность и повысить эффективность омметра.

Обратите внимание! В случае обнаружения брака, следует сделать замену оборудования или обратиться в сервисный центр для оказания профессиональной помощи.

Необходимость обращения к мастерам для ремонта оборудования

Что следует выполнить после окончания измерения мегаомметром

Сразу после выполнения измерений, необходимо сделать три главные вещи. Нужно внесение в протокол измерительных результатов, приведения в порядок рабочего места с инструментами и приспособлениями, а дальше снятие с токоведущих частей остаточного заряда кратковременным заземлением.

Важно отметить, что по требованию охраны труда, в конце работы должна быть отключена измерительная аппаратура, разряжена цепь, которая находится под мегаомметровым воздействием. Далее нужно сделать отсоединение приборных проводов от тока, записать измерительные результаты в ведомость. Потом сообщить лицу, который ответственен за производственные работы. Обо всех недостатках, которые были замечены в процессе деятельности, нужно доложить, чтобы были приняты меры.

Правильное отключение как залог сохранения работоспособности прибора

В целом, мегаомметр — измерительный прибор, позволяющий изучить показания сопротивления электросетевых и приборных обмоток. Отличается от других аппаратов работой на высоком напряжении. Напряжение генерируется самим устройством благодаря встроенной батареи. Область применения его обширна: обычно используется во всех видах промышленности, где есть высокое напряжение. Использовать несложно, главное — изучить инструкцию по применению мегаомметра эс0202 2г и соблюдать технику безопасности. В противном случае, возможна поломка и, как следствие, необходимость ремонта.

Узнайте, как проводится проверка сопротивления изоляции

Служба калибровки и термографического контроля

Переключить меню

перейти к содержанию
  • Дом
  • ОБЯЗАННОСТИ ПО УХОДУ
  • Услуги
    • Испытания
      • Испытания электрического низкого напряжения
        • Тест автоматического включения резерва
        • Тест батареи конденсаторов
        • Коммерческие электрические испытания
        • Тест сопротивления контактов
        • Тест сопротивления контура замыкания на землю
        • Earth Ground Test
        • Испытание на электробезопасность
        • Тест банка нагрузки генератора
        • Испытание сопротивления изоляции
        • Испытание грозозащитных разрядников
        • Тест портативного устройства
        • Заводские приемочные испытания
        • Тест защитных устройств
        • Тест мегомметра
        • Live Test
        • Проверка целостности
        • Испытания и безопасность УЗО
        • Тест PSC и тест PFC
        • Заводские приемочные испытания
        • Испытание распределительного устройства
      • Испытания сверхнизкого напряжения
        • Тест батареи
      • Испытания среднего напряжения
        • Тест реле защиты
    • Калибровка
      • Калибровка температуры и влажности
        • Калибровочный мармит для вторых блюд
        • Калибровка шокового охлаждения
        • Шоковая заморозка Calibra
.

Общие сведения об испытании сопротивления изоляции | EC&M

  • Войти
  • Регистр
  • Поиск
  • COVID-19
  • Национальный электротехнический кодекс
  • Проектирование
  • Строительство
  • Техническое обслуживание / ремонт / операции
  • Безопасность Освещение
  • Надежность и контроль качества электроэнергии
  • Интеллектуальные здания
  • Управление энергопотреблением
  • Обучение
  • Возобновляемые источники энергии
  • Поиск и поставка продукции
  • Электрические испытания
  • Несчастные случаи и расследования
  • 40 лучших фирм по проектированию электрических систем
  • Топ 50 электрических подрядчиков
  • Статьи
  • Вебинары
  • Библиотека электронных книг
  • Отраслевые эксперты и консультанты
  • Предыдущие выпуски в цифровом формате
  • О нас
  • Рекламировать
  • Подписка на электронную новостную рассылку
  • Подписка на журнал
  • Политика конфиденциальности и файлов cookie
  • Служба поддержки
Значок Facebook Значок Twitter Значок LinkedIn Значок YouTube.

Проверка сопротивления изоляции - Тестер изоляции

Сопротивление изоляции

Сопротивление изоляции (IR) - один из наиболее распространенных тестов двигателей. В нем также больше типов токов, чем думают некоторые пользователи. В самом простом варианте испытание сопротивления изоляции проводится с помощью ручного измерителя, измеряющего мегаом. Продвинутый тестер строит графики МОм в течение 10 минут или более и отображает напряжение, ток утечки, DAR и отношения PI. Узнайте больше о соотношениях DAR и PI.

При испытании на ИК или МОм измеряется приложенное напряжение и полный ток утечки между обмотками и корпусом двигателя / землей. Для расчета сопротивления в МОм применяется закон Ома.

R = V / I

Где R - сопротивление в МОмах, V - приложенное напряжение в вольтах, а I - общий результирующий ток в микроамперах (мкА).

Температурный поправочный коэффициент применяется для корректировки мегомного измерения при текущей температуре до значения, которое было бы при стандартной температуре.Согласно стандартам IEEE 43 и ANSI / EASA стандартная температура составляет 40 ° C.

Ток утечки бывшего в употреблении двигателя часто представляет собой поверхностный ток, протекающий в грязи на внешней стороне обмоток. Грязь содержит частицы пыли, масла, жира, влаги и т. Д. Ток проводимости, протекающий через слабую изоляцию заземления к земле, часто затмевается поверхностными токами. Поэтому испытание сопротивления изоляции или измерение МОм иногда называют испытанием на загрязнение. Мегоммы имеют тенденцию падать с увеличением количества грязи.

Измерение МОм на новых двигателях часто не представляет интереса, кроме как проверить отсутствие прямого замыкания на землю. Пользователи часто переходят непосредственно к тесту Hipot.

Токи, задействованные в тестах МОм, DAR и PI
  1. I C - Емкостный: Емкостной пусковой ток доводит потенциал двигателя до испытательного напряжения, заряжая его. Этот ток быстро падает и достигает нуля в течение нескольких секунд после достижения испытательного напряжения.Для больших двигателей с большой емкостью пусковой ток велик. Пределы отказа по общему току утечки должны быть достаточно высокими, чтобы избежать срабатывания предела во время этой начальной фазы испытания. Для получения дополнительной информации о емкостном пусковом токе и о том, как избежать срабатывания предела, см. Hipot Test.
  2. I A - Поглощение: Ток поглощения поляризует изоляцию. Этот ток также падает до нуля или почти до нуля в течение от 30 секунд до 1 минуты в двигателях с произвольной обмоткой.Двигатели с формованной обмоткой работают намного дольше из-за слоев изоляции, используемых между витками. Изменение тока поглощения во времени - это то, что используется для расчета отношений PI и DAR при испытании сопротивления изоляции.
  3. I G - Электропроводность: ток проводимости протекает между медными проводниками и землей через большую часть изоляции. Этот ток обычно равен нулю, если двигатель новый или неповрежденный. По мере того как изоляция двигателя стареет и треснет или повреждена, может течь ток проводимости в зависимости от приложенного испытательного напряжения.Ток проводимости имеет тенденцию увеличиваться с увеличением напряжения. Этот ток иногда называют током утечки или частью тока утечки.
  4. I L - Поверхностная утечка: Согласно IEEE 43, поверхностная утечка - это ток, протекающий в грязи на поверхности обмоток на землю. В других стандартах он называется током поверхностной проводимости. Более грязный двигатель имеет более высокий ток утечки и более низкий результат в МОм. В двигателях с покрытием для контроля напряжения на концевых обмотках может наблюдаться увеличение поверхностного тока утечки.Через 1 минуту с электродвигателем с произвольной обмоткой или через 5-10 минут с электродвигателем с фасонной обмоткой ток поверхностной утечки обычно является единственным остающимся током, если только изоляция не является слабой или поврежденной.
  5. I T - Итого: Общий ток складывается из 4 токов. Тестер двигателя и изоляции измеряет общий ток. Полный ток равен или очень близок к току поверхностной утечки в конце испытания сопротивления изоляции. Это дает оператору хорошее представление о том, насколько грязен или загрязнен двигатель.Он также предупреждает оператора о возможном катастрофическом соединении обмоток с землей.
Ток утечки как функция времени

Ток утечки как функция времени

Чтобы определить, является ли ток утечки в основном поверхностным током или он также содержит ток проводимости, необходимо выполнить испытание ступенчатым напряжением или испытание с линейным увеличением. См. Информацию ниже о минимальных уровнях МОм. Обратите внимание, что эти тесты могут проводиться при напряжениях ниже, чем нормальное испытательное напряжение постоянного тока, чтобы определить ток проводимости.

Отслеживание измерений МОм во времени
Измерения

МОм отслеживаются с течением времени, чтобы помочь определить, когда двигатель или генератор следует ремонтировать. Это выполняется автоматически с помощью мотор-анализатора iTIG III. В оценках ремонта, особенно для более крупных двигателей, используются другие испытания сопротивления изоляции, такие как испытания DAR или PI. Дополнительные испытания - это высоковольтное напряжение постоянного тока, испытания ступенчатого напряжения / линейного изменения, испытания на скачки напряжения и измерение частичных разрядов.

Стандарты и температурная компенсация

ANSI / AR100-2015 и IEEE 43-2013 содержат следующие рекомендации.Двигатели с низкими значениями сопротивления изоляции не рекомендуется подвергать испытаниям высоким напряжением.

Примечание по температурной компенсации

Вышеуказанные пределы действительны для обмоток при температуре 40 ° C. Результаты испытаний МОм имеют температурную компенсацию, потому что обмотки обычно не имеют этой температуры при испытании. Большинство тестеров изоляции делают это автоматически, если в тестере вводится температура обмотки.Значения сопротивления должны быть компенсированы температурой, если ИК отслеживается во времени. Температура также должна быть выше точки росы для точного сравнения результатов.

Согласно наиболее распространенной формуле температурной компенсации сопротивление изоляции снижается на 50% на каждые 10 ° C повышения температуры. Таким образом, очевидно, что изоляционные свойства резко снижаются при повышении температуры. ИК-излучение 10000 МОм (10 гига Ом) при 20 ° C (~ 68 ° F) падает до 2500 МОм при 40 ° C и до 39 МОм при 100 ° C.

Есть несколько других формул температурной компенсации. Приведенная выше формула, вероятно, наиболее консервативна. Различные типы систем изоляции в двигателях с формованной обмоткой обладают уникальными температурными характеристиками. Их можно получить только у производителя двигателя.

Суть в том, что температура оказывает значительное влияние на сопротивление изоляции и должна компенсироваться для достижения наилучших результатов.

Ограничения толкования

Вопрос: Насколько лучше тест № 1, чем тест № 2?

Ответ: Кто знает? Разница 0.01µA может быть результатом действия ряда переменных. Эти переменные могут включать температуру, изменения условий окружающей среды, электрические помехи или нестабильность напряжения или тока.

Разница в сопротивлении изоляции велика из-за способа расчета сопротивления. Единственное физическое изменение - это сила тока, и это изменение очень мало. Некоторые тестеры изоляции отображают ток утечки с точностью до 3 rd или даже 4 th с точностью до 1 нА или 1 пА.Прибор рассчитывает и отображает ИК в терраомах (ТОм). Точность последней цифры (а) не указана или является низкой по уважительной причине. Он слишком зависит от переменных, отличных от тока утечки, который он предназначен для измерения.

Другие советы и подсказки от IEEE 43-2013
  • Перед началом испытания изоляцию обмотки следует разрядить, чтобы избежать ошибок измерения.
  • Для двигателей с покрытием для контроля напряжения, нанесенным на концевые обмотки, может наблюдаться увеличение поверхностного тока утечки и, следовательно, более низкие МОм, чем ожидалось.
  • Для температуры обмотки ниже точки росы невозможно предсказать эффект конденсации на поверхности. Таким образом, поправка на 40 ° C для анализа тенденций вносит значительные ошибки.
  • Для обмоток с прямым водяным охлаждением необходимо удалить воду и тщательно высушить внутренний контур. Изготовитель обмотки может предоставить средства измерения результатов испытания сопротивления изоляции без необходимости слива охлаждающей воды.
  • Рекомендуется минимальное время разряда, в четыре раза превышающее длительность приложения напряжения.Все Electrom Instruments разряжают двигатель через резистор. Для двигателей с напряжением менее 100 В подключение обмотки непосредственно к земле с помощью заземляющего провода прибора, закорачивающего стержня или перемычки немедленно завершит разряд. Для разрядки любого остаточного абсорбирующего заряда требуется больше времени. Держите двигатели с абсорбционными зарядами подключенными непосредственно к земле, если с ними будут обращаться вскоре после испытания.
  • Абсорбционный разряд занимает более 30 минут в зависимости от типа изоляции и физических размеров двигателя.
  • Существенное снижение сопротивления изоляции (увеличение измеряемого тока) с увеличением приложенного напряжения является признаком проблем с изоляцией при испытании сопротивления изоляции.
  • Постоянное увеличение ИК-излучения с возрастом указывает на разрушение связи изоляционных материалов, особенно если они термопластичные.
  • Когда низкий PI происходит при температурах выше 60 ° C, в качестве проверки рекомендуется второе измерение ниже 40 ° C и выше точки росы.
  • Код
  • PI может использоваться для индикации завершения процесса сушки изоляции. Это происходит, когда PI превышает рекомендуемый минимум.
  • Если значение IR при 40 ° C больше 5000 МОм, PI неоднозначен и не принимается во внимание.
.Проверка сопротивления изоляции

- проверка сопротивления изоляции производится мегомметром

Тест на сопротивление изоляции - второй тест, требуемый стандартами тестирования электробезопасности.

Тест сопротивления изоляции заключается в измерении сопротивления изоляции тестируемого устройства, при этом фаза и нейтраль замыкаются накоротко. Измеренное сопротивление должно быть выше указанного в международных стандартах предела.

Мегаомметр (также называемый измеритель сопротивления изоляции , тераомметр) затем используется для измерения омического значения изолятора при постоянном напряжении с большой стабильностью.

Для измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения подается на измеряемое сопротивление, и результирующий ток считывается на высокочувствительной цепи амперметра, которая может отображать значение сопротивления.

В нашем ассортименте тестеров сопротивления изоляции используются два типа цепей амперметра, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.

ИСПЫТАНИЕ ИЗОЛЯЦИИ

Его цель - измерить сопротивление изоляции под постоянным напряжением высокой стабильности, обычно 50, 100, 250, 500 или 1000 В постоянного тока. Оммическое значение сопротивления изоляции выражается в мегомах (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.

Критична стабильность напряжения; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.

ЦЕПЬ АККУМУЛЯТОРА

Вход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра. Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI.

Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений (от l x l04 Ом до 2,106 Ом).

ЦЕПЬ АМПЕРМЕТРА ОБРАТНОЙ СВЯЗИ

Эта схема чаще всего используется в наших приборах.Он охватывает измерение сопротивления высоких значений, превышающих 2,106 Ом. Принцип показан на диаграмме ниже.

Входной ток проходит через обратную связь Rc.

Низкий уровень тока смещения усилителя незначительно влияет на

нынешний л.

ИЗМЕРЕНИЕ ВЫСОКОГО ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ
Использование источника постоянного напряжения дает преимущество в виде точного определения значения напряжения, используемого для измерения.Выбор этого напряжения - важный параметр.

Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность - два важных параметра, которые влияют на значение сопротивления изолятора. Мы предлагаем на последней модели Sefelec измерение этих двух физических параметров (M1501P). В следующей таблице можно найти приблизительное значение сопротивления изоляционных материалов.

ЗАЩИТНАЯ ЦЕПЬ
Чтобы минимизировать токи утечки, мы предлагаем защитное соединение. Схема защиты позволяет снизить помехи на тестовом образце. Клемма, доступная на передней панели наших приборов, позволяет измерять одно из сопротивлений конфигурации Delta (т. Е. Кабеля с двумя проводниками и его внешним экраном), так что на результат не влияет наличие двух других шунтов. сопротивления.

* Для этого клемма защиты приближена к потенциалу измерительного входа прибора.

* Значение Rx будет определено с большой точностью, если ток lx, измеренный на входе мегомметра, действительно является током, протекающим через Rx.

* Rp1: обозначает утечку между цепями высокого напряжения (ВН) и землей.

* Rp3 - Rp4: представляют параллельную утечку Rx. Если средняя точка Rp2-Rp4 подключена к ограждению, эти утечки не повлияют на измерение Rx.

* Rp2: не влияет, если ограждение заземлено.

.

Основы испытания сопротивления изоляции

  • Войти
  • Регистр
  • Поиск
  • COVID-19
  • Национальный электротехнический кодекс
  • Проектирование
  • Строительство
  • Техническое обслуживание / ремонт / операции
  • Безопасность Освещение
  • Надежность и контроль качества электроэнергии
  • Интеллектуальные здания
  • Управление энергопотреблением
  • Обучение
  • Возобновляемые источники энергии
  • Поиск и поставка продукции
  • Электрические испытания
  • Несчастные случаи и расследования
  • 40 лучших фирм по проектированию электрических систем
  • Топ 50 электрических подрядчиков
  • Статьи
  • Вебинары
  • Библиотека электронных книг
  • Отраслевые эксперты и консультанты
  • Предыдущие выпуски в цифровом формате
  • О нас
  • Рекламировать
  • Подписка на электронную новостную рассылку
  • Подписка на журнал
  • Политика конфиденциальности и файлов cookie
  • эрм Службы
Значок Facebook Значок Twitter.

Часто задаваемые вопросы: Руководство по измерению сопротивления

При измерении сопротивления точность - это все. Это руководство - это то, что мы знаем о достижении максимально возможного качества измерений.


Индекс

  1. Введение в измерение сопротивления
  2. Приложения
  3. Сопротивление
  4. Принципы измерения сопротивления
  5. Методы 4-х контактных соединений
  6. Возможные ошибки измерения
  7. Выбор подходящего инструмента
  8. Примеры применения
  9. Полезные формулы и диаграммы
  10. Узнать больше

1.Введение

Измерение очень больших или очень малых величин всегда затруднено, и измерение сопротивления не является исключением. Значения выше 1 ГОм и значения ниже 1 Ом представляют проблемы для измерения.

Cropico - мировой лидер в области измерения низкого сопротивления; мы производим широкий ассортимент омметров низкого сопротивления и принадлежностей, которые подходят для большинства измерительных приложений. В этом справочнике дается обзор методов измерения низкого сопротивления, объясняются распространенные причины ошибок и способы их предотвращения.Мы также включили полезные таблицы характеристик проводов и кабелей, температурных коэффициентов и различных формул, чтобы вы могли сделать наилучший выбор при выборе измерительного прибора и техники измерения. Мы надеемся, что вы найдете это руководство ценным дополнением к вашему набору инструментов.


2. Заявки

Производители компонентов
Резисторы, катушки индуктивности и дроссели - все должны убедиться, что их продукция соответствует указанному допуску по сопротивлению, окончанию производственной линии и контролю качества.

Производители переключателей, реле и соединителей
Требуется проверка того, что контактное сопротивление ниже установленных пределов. Это может быть достигнуто в конце тестирования производственной линии, обеспечивая контроль качества.

Производители кабелей
Необходимо измерять сопротивление медных проводов, которые они производят, слишком высокое сопротивление означает, что токонесущая способность кабеля снижается; слишком низкое сопротивление означает, что производитель слишком великодушен к диаметру кабеля, используя больше меди, чем ему нужно, что может быть очень дорогим.

Установка и обслуживание силовых кабелей, распределительных устройств и устройств РПН
Для этого требуется, чтобы кабельные соединения и переключающие контакты имели минимально возможное сопротивление, что позволяет избежать чрезмерного нагрева стыка или контакта, плохого кабельного стыка или переключающего контакта. вскоре выходят из строя из-за этого нагревающего эффекта. Регулярное профилактическое обслуживание с регулярными проверками сопротивления обеспечивает максимально возможный срок службы.

Производители электродвигателей и генераторов
Требуется определить максимальную температуру, достигаемую при полной нагрузке.Для определения этой температуры используется температурный коэффициент медной обмотки. Сопротивление сначала измеряется при холодном двигателе или генераторе, то есть при температуре окружающей среды, затем блок работает с полной нагрузкой в ​​течение определенного периода времени, а сопротивление измеряется повторно. По изменению значения сопротивления можно определить внутреннюю температуру двигателя / генератора. Наши омметры также используются для измерения отдельных катушек обмотки двигателя, чтобы убедиться, что нет коротких или разомкнутых витков цепи и что каждая катушка сбалансирована.

Автомобильная промышленность
Требование к измерению сопротивления сварочных кабелей роботов, чтобы гарантировать, что качество сварки не ухудшается, т. Е. Обжимные соединители выводов аккумуляторной батареи, сопротивление детонатора подушки безопасности, сопротивление жгута проводов и качество обжимных разъемов на компонентах.

Производители предохранителей
Для контроля качества и измерения сопротивления соединений на самолетах и ​​военных транспортных средствах необходимо убедиться, что все оборудование, установленное на самолетах, электрически подключено к раме, включая оборудование камбуза.Те же требования предъявляются к танкам и другой военной технике. Производители и пользователи больших электрических токов - все должны измерять распределение сопротивления соединений, шин и соединителей по электродам для гальваники.

Железнодорожные коммуникации
Включая трамваи и подземные железные дороги (Метро) - для измерения стыков силовых кабелей, включая сопротивление стыков рельсовых путей, поскольку рельсы часто используются для передачи информации.


3.Сопротивление

Закон Ома V = I x R (Вольт = ток x сопротивление). Ом (Ом) - это единица электрического сопротивления, равная сопротивлению проводника, в котором ток в один ампер создается потенциалом в один вольт на его выводах. Закон Ома, названный в честь его первооткрывателя, немецкого физика Георга Ома, является одним из важнейших основных законов электричества. Он определяет соотношение между тремя фундаментальными электрическими величинами: током, напряжением и сопротивлением. Когда напряжение подается на цепь, содержащую только резистивные элементы, ток течет в соответствии с законом Ома, который показан ниже.


4. Принципы измерения сопротивления

Амперметр Метод вольтметра
Этот метод восходит к основам. Если мы используем батарею в качестве источника напряжения, вольтметр для измерения напряжения и амперметр для измерения тока в цепи, мы можем рассчитать сопротивление с разумной точностью. Хотя этот метод может обеспечить хорошие результаты измерения, он не является практическим решением повседневных задач измерения.

Двойной мост Кельвина
Мост Кельвина является разновидностью моста Уитстона, который позволяет измерять низкие сопротивления.Диапазон измерения обычно составляет от 1 мОм до 1 кОм с наименьшим разрешением 1 мкОм. Ограничения моста Кельвина: -

  1. требует ручной балансировки
  2. чувствительный нуль-детектор или гальванометр требуется для определения состояния баланса
  3. измерительный ток должен быть достаточно высоким для достижения достаточной чувствительности

Двойной мост Кельвина обычно заменяют цифровыми омметрами.

DMM - двухпроводное соединение
Простой цифровой мультиметр можно использовать для более высоких значений сопротивления.Они используют двухпроводной метод измерения и подходят только для измерения значений выше 100 Ом и там, где не требуется высокая точность.

При измерении сопротивления компонента (Rx) через компонент проходит испытательный ток, и измерительный прибор измеряет напряжение на его выводах. Затем измеритель рассчитывает и отображает полученное сопротивление и называется двухпроводным измерением. Следует отметить, что измеритель измеряет напряжение на своих выводах, а не на компоненте.В результате падение напряжения на соединительных выводах также включается в расчет сопротивления. Измерительные провода хорошего качества будут иметь сопротивление примерно 0,02 Ом на метр. В дополнение к сопротивлению выводов, сопротивление соединения выводов также будет включено в измерение, и оно может быть таким же высоким или даже выше, чем сопротивление самих выводов.

При измерении больших значений сопротивления эту дополнительную ошибку сопротивления проводов можно игнорировать, но, как вы можете видеть из приведенной ниже таблицы, ошибка становится значительно выше, когда измеренное значение уменьшается, и совершенно неприемлемо для значений ниже 10 Ом.

ТАБЛИЦА 1

Примеры возможных ошибок измерения

RX Сопротивление измерительного провода R1 + R2 Сопротивление подключения R3 + R4 Rx, измеренный на клеммах DMM = Rx + R1 + R2 + R3 + R4 Ошибка Ошибка%
1000 Ом 0,04 Ом 0.04 Ом 1000,08 Ом 0,08 Ом 0,008
100 Ом 0,04 Ом 0,04 Ом 100,08 Ом 0,08 Ом 0,08
10 Ом 0,04 Ом 0,04 Ом 10,08 Ом 0,08 Ом 0,8
1 Ом 0,04 Ом 0.04 Ом 1,08 Ом 0,08 Ом 8
100 мОм 0,04 Ом 0,04 Ом 180 мОм 0,08 Ом 80
10 мОм 0,04 Ом 0,04 Ом 90 мОм 0,08 Ом 800
1 мОм 0,04 Ом 0,04 Ом 81 мОм 0.08 Ом 8000
100 мкОм 0,04 Ом 0,04 Ом 80,1 мкОм 0,08 Ом 8000

Для измерения истинного постоянного тока резистивные омметры обычно используют 4-проводное измерение. Постоянный ток проходит через приемник и внутренний эталон омметра. Затем измеряется напряжение на Rx и внутреннем стандарте, и отношение двух показаний используется для расчета сопротивления.При использовании этого метода ток должен быть стабильным только в течение нескольких миллисекунд, необходимых для того, чтобы омметр сделал оба показания, но для этого требуются две схемы измерения. Измеренное напряжение очень мало, и обычно требуется чувствительность измерения мкВ.

В качестве альтернативы используется источник постоянного тока для пропускания тока через приемник. Затем измеряется падение напряжения на Rx и рассчитывается сопротивление. Для этого метода требуется только одна измерительная цепь bu

.

Смотрите также