Какой варистор поставить в сетевой фильтр


Сетевой фильтр из дешевого удлинителя

Еще давным-давно я заметил, что когда включается/выключается холодильник на кухне, в колонках стереосистемы звучит неприятный щелчок. Проблема решилась установкой конденсаторов в розетки – с этого началась моя “дружба” с сетевыми фильтрами. В наши дни электрическая сеть 220 вольт сильно загрязнена множеством помех и кратковременных всплесков напряжения, которые проникают из сети и мешают аппаратуре нормально работать. Для борьбы с сетевыми помехами применяются фильтры. Дешевые фильтры на самом деле фильтрами не являются, а дорогие (навроде вполне приличного фильтра “Pilot”) – слишком дороги, ведь обычно их требуется несколько штук (у меня дома их штук восемь, включенных постоянно). Поэтому хороший вариант – купить дешевый фильтр и переделать его.

В принципе, для доработки можно использовать и обычный удлинитель, но обычно в удлинителе нет свободного места для тех деталей, которые в него нужно будет вставить. А вот в удлинителе с выключателем (тоже полезная вещь) свободное место есть.

Мне недавно срочно понадобился такой вот фильтр, я купил в ближайшем киоске удлинитель и доработал его. На все (включая приобретение и фотографирование) ушло меньше чем полдня. Вот герой нашего рассказа:

Такие устройства на самом деле сетевым фильтром не являются. Там внутри находится только лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда присутствуют в сети (немного про варисторы см. Маломощный блок питания). Вот и вся его фильтрация. Некоторые устройства (в том числе и мое) имеют токовый размыкатель, который должен по идее размыкаться при протекании большого тока (никогда не проверял, как они работают). В этом случае на корпусе есть кнопочка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал.

Разбираем удлинитель и смотрим что у него внутри:

Число “14”, нанесенное синим маркером, ничего не означает – так изначально и было. По нему можно судить, что собирали эту штуку не китайцы – иначе бы был иероглиф! Слева черная фуська – токовый размыкатель, Правее другая черная фуська (к ней подходит много проводов) – выключатель. Между ними варистор, но его плохо видно. На пересечении зеленого и коричневого проводов, голубой диск внизу – это он. Красные провода припаяны (проверьте качество пайки, оно бывает отвратительным!) к длинным металлическим пластинам, которые и являются контактами.

Теперь встраиваем внутрь фильтр, и готово. Вот схемы того, что было, и что будет (выключатель с лампочкой подсветки на схемах не показан):

На исходной схеме: Sc – токовый размыкатель, V1 – варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса; диаметр 6…10 мм – самое то), надписью “Удлинитель” как раз и помечены эти самые контактные пластины.

В доработанном варианте добавляется RLC фильтр. Правда хороший фильтр сделать не удастся – все же мало места, да и для него нужно подбирать детали. Именно так делают “Пилоты” – сначала проектируют схему, а потом под нее уже делают корпус. Но тем не менее, такой вот фильтр, собранный из подручных материалов, работает достаточно хорошо.

Пройдемся по элементам. Катушки L1 и L2 вместе с конденсаторами С1 и С2 образуют LC фильтр. Сопротивление катушек на высоких частотах большое, а вот на низких – маленькое. Поэтому, чтобы и низкочастотные помехи хоть немного подавить, последовательно с катушками включены резисторы R1, R2. Резистор R3 разряжает конденсаторы при отключении от сети, иначе, заряженные конденсаторы могут нехило стукнуть током. Конденсатор С2 включен с другой стороны контактных пластин для того, чтобы создать “распределенную” емкость, чтобы индуктивность и сопротивление пластин не ухудшало фильтрацию. На самом деле, в нашем случае разницы, где включен С2 никак не заметно слишком уж маленькая индуктивность и сопротивление контактных пластин. Но все равно приятно, что мы об этом позаботились! И, кроме того, именно в том конце корпуса есть свободное место, куда можно поставить этот конденсатор.

Иногда возникают споры о размещении резисторов R1 и R2. Как их включать – до варистора, или после, как у меня? На самом деле это зависит от нашей цели. До варистора, резисторы нужно включать, если мы хотим улучшить работу варистора при подавлении кратковременных высоковольтных (до нескольких тысяч вольт) импульсов. Эти импульсы варистор “пропускает через себя”, ток через варистор достигает сотен ампер, и практически все напряжение импульса падает на сопротивлении проводов и контактов.

Сопротивление проводов довольно маленькое (это ведь чем лучше сеть, тем меньше сопротивление), и ток очень большой. Поэтому при большом токе на варисторе получается довольно большое напряжение (левый рисунок). Если же на пути тока поставить резисторы R1 и R2, то их сопротивление (совместно 1…2 Ома) заметно больше сопротивления проводов, и ток будет гораздо меньше (но все равно сотня-другая ампер!). А раз ток меньше, то и напряжение на варисторе меньше (правый рисунок).

Казалось бы, правый вариант намного лучше! Не совсем. Дело в том, что эти импульсы кратковременны, и большинство приборов их “не замечает” (они нередки в сети, вы их замечали?). Для чего же варистор? На всякий пожарный случай. Мало ли что. 100 раз импульс не подействует, а на 101-й придет импульс побольше, и спалит блок питания, или еще что. Так вот, если этот кратковременный импульс в 3000 вольт не всегда заметен, есть ли разница, останется от него 300 вольт, или 600? (Внимание! цифры 300 и 600 я взял “от фонаря”! На самом деле все это очень сильно зависит и от конкретной сети, и от конкретного варистора и от конкретного импульса! Но принцип верный!)

Почему же я включил резисторы после варистора? Чтобы максимально отделить от варистора конденсаторы. Конденсатор, включенный параллельно варистору, совсем даже ему не помогает (иногда мешает, иногда – нет). Кроме того, при ограничении варистором вражеских импульсов, образуется куча высокочастотных помех, у которых напряжение хоть и не высокое, но кому они нужны? Включив резисторы после варистора, я минимизировал прохождение помех на выход фильтра – ведь у меня получилось две ступени фильтрации – с высоковольтной гадостью справляется варистор, а с остальной – катушки с конденсаторами, которым резисторы очень даже помогают.

Вывод. Если у вас очень “грязная” сеть, в которую часто включают сварочные аппараты, ставьте резисторы до варистора. Если нет – ставьте их после. Возникает вопрос: а почему бы не включить две пары резисторов – одну до варистора. а другую после варистора? По одной простой причине – резисторы греются. Две пары резисторов увеличивают нагрев вдвое. А там и расплавится что-нибудь, или вообще загорится! А ставить резисторы маленького сопротивления (чтобы меньше грелись) – тоже не выход, они будут хуже работать.

Итак, берем детали

и прикидываем, куда их притулить (о самих деталях – ниже):

Все хорошо влазит, ни с чем не замыкает, можно паять.

Конденсатор С2 (он справа) должен иметь длинные выводы, иначе он не даст поставить на место контактные пластины (хотя длинные выводы ухудшают работу конденсатора). Поэтому его можно и не ставить – будет намного легче собирать все обратно.

Когда все обратно собрали – на вид ничего не изменилось, но начинка уже совсем другая. Чтобы окончательно перекрыть путь помехам, на сетевой провод возле самого удлинителя ставим ферритовую шайбу (удобнее всего разрезную на защелках):

(Это на другом проводе феррит – тот, который я поставил на этот удлинитель точно такой же, просто я забыл сфотографировать, а потом уже было далеко доставать)

Об этом поподробнее. В отличие от нормальной передачи энергии, когда по одному проводу ток приходит в нагрузку, а по другому возвращается обратно в источник, высокочастотная (ВЧ) помеха может распространяться сразу по двум проводам. Например, при ударе молнии вблизи электрических проводов, в них возникает ток, который идет сразу по обоим проводам в устройство, и, пройдя сквозь него, через емкость между корпусом и землей замыкается на землю.

Т.е. оба сетевых провода для помехи – это как два параллельных прямых провода (или как антенна), а земля – обратный провод. Внутри устройства, ток ВЧ помехи может воздействовать на разные цепи и мешать им жить. Нацепив ферритовое кольцо на сетевой провод, мы увеличиваем его (провода) индуктивность, а значит и сопротивление на высоких частотах. Поэтому ток помехи станет меньше.

Конструкция и детали

Схема очень непривередлива к деталям. Но все же некоторые правила нужно соблюдать. Разберем по порядку.

Варистор. Тип 471. Диаметр 6…10 мм. Это оптимально.

Резисторы R1, R2. Чем их сопротивление больше, тем лучше фильтрация, но больше нагрев и больше потери напряжения. С другой стороны, нагрев и падение напряжения тем больше, чем больше потребляемый ток (и мощность). Поэтому сопротивление резисторов выбираем в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру:

Мощность нагрузки, Втдо 250до 380до 500
Сопротивления R1 и R2, Ом0,820,360,22

Если планируется подключать более мощные потребители, то возможно, придется вообще отказаться от резисторов. С другой стороны, зачем делать фильтр, чтобы подключать к нему утюг?!

Резисторы используются мощностью 5 Вт. Можно взять и двухватные, но не стОит – они должны иметь запас по мощности на случай, если вдруг ток окажется больше, чем ожидалось (или помеха проскочит, где ее энергия выделится?..).

Дроссели L1 и L2. Это самый “труднодоставаемые” элементы. Но с другой стороны, поскольку вместе с ними работают резисторы, требования к дросселям снижаются. Требования такие:

  • Ферритовый сердечник. Катушка без сердечника имеет слишком низкую индуктивность (при реальных габаритах), а стальной сердечник плохо работает на ВЧ.
  • Сердечник незамкнут, или с воздушным зазором – иначе сердечник может насытиться, и индуктивность сильно снизится.
  • Максимальный ток катушки (это ток, при котором индуктивность начинает снижаться из-за насыщения сердечника) не меньше, чем ток нагрузки.
  • Индуктивность дросселя не менее 10 мкГн. Чем больше, тем лучше (до 10 мГн).
  • Дроссели не имеют магнитной взаимосвязи.

Конденсаторы С1, С2. Если С2 поставить не удается, то вполне можно ограничиться одним конденсатором. Поскольку они соединены параллельно, то вполне можно рассматривать их как один конденсатор с емкостью, равной сумме емкостей С1 и С2. Требования к конденсатору:

  • Конденсатор пленочный, типа К73-17 или аналогичный (импортные меньше по габаритам).
  • Емкость не меньше 0,22 мкФ. Больше 1 мкФ тоже не нужно.
  • Напряжение 630 вольт. Зачем столько? А это запас, ведь при помехах, напряжение повышается. Да и по правилам напряжение на конденсаторе должно быть меньше максимально допустимого.

Резистор R3. Его мощность 0,5 Вт, хотя на нем выделяется в 10 раз меньше. К этому резистору прикладывается 220 вольт, и он должен иметь довольно большие геометрические размеры (отсюда и 0,5 Вт), чтобы такое напряжение выдерживать. Сопротивление от 510 кОм до 1,5 МОм.

Вот и все. Можно пользоваться, и удачи в борьбе с помехами!

По просьбе читателей, я измерил насколько фильтр подавляет помехи. Это не очень хорошо получилось – высоковольтные импульсы мне дома сгенерировать сложно, и я этого не делал. А вот ВЧ помеху генератор выдал (маленькой амплитуды, но какая разница?). Вот два теста. Они могут быть не совем точными – величина подавления может быть несколько занижена. В качестве нагрузки в фильтр был включен паяльник.

Первый тест – подавление частоты 30 кГц. Эта частота часто используется в импульсных блоках питания (компьютерных, например), и этой частотй “засорена” сеть. Вот осциллограммы напряжения на входе и выходе:

Синий – вход, красный – выход. Масштабы одинаковы. Подавление раз в 8, что очень неплохо для простого фильтра, да еще сделанного из подручных материалов.

Второй тест – действительно высокочастотная помеха частотой 200 кГц:

Здесь выходное напряжение в 100 раз большем масштабе, чем входное. Подавление помехи примерно в 350 раз!!! Так что ВЧ помехи не пройдут.

Новенькое!

В продаже появились неплохие катушки:

Они намотаны довольно толстым проводом на ферритовом сердечнике, по форме напоминающем гантелю. Снаружи надета термоусадочная трубка. У этих катушек довольно большая индуктивность при приличном токе (и несколько типоразмеров – чем больше размер, тем больше произведение индуктивности на максимальный ток). Имея такие катушки, фильтры делать – одно удовольствие. Схема почти такая же, теперь катушки “мощные” и резисторы в цепь гашения помех не нужны:

В принципе, все осталось прежним, но кроме катушек изменился конденсатор. Это специализированный конденсатор, предназначенный доя работы в фильтрах (такие стоЯт в компьютерах и бесперебойниках. И напряжение 280 В, на которое рассчитан конденсатор – это действующее значение переменного тока (об этом говорит знак “280V ~” на корпусе). Такое же, как и 220. Т.е. не нужно делить напряжение, написанное на конденсаторе на корень из 2, чтобы узнать на какое макс. напряжение переменного тока его можно включить. Как раз на 280 вольт. А у нас – 220, запас приличный. Вот что получилось:

Голубой – варистор, который и был в этом “фильтре”-удлиннителе; рядом с ним черные – катушки, по хорошему их надо размещать так, чтобы их оси были перпендикулярны, но я сначала сфотографировал, потом отогнул (нижнюю на фото) катушку, потом все закрутил, а уж потом вспомнил, что сфотографировал неправильно! Снова разбирать было лень, уж извиняйте! Желтый – это конденсатор. Насколько я с ними встречался – они все желтые.

Резистор, разряжающий конденсатор, здесь не установлен – в этот фильтр будет все время включено устройство, которое и разрядит конденсатор. А если один раз в жизни я этот фильтр сниму, то уж не забуду разрядить. Просто быо лень искать и паять резистор, но всем я категорически рекомендую в этом с меня пример не брать, и резистор устанавливать!

Вот и все! Очень просто и очень неплохо!

18.08.2007 – 24.04.2008

Total Page Visits: 938 - Today Page Visits: 5

Как выбрать варистор на 220 вольт

Варисторы устанавливаются параллельно защищаемому электрооборудованию. В случае трехфазной нагрузки при соединении «звездой» они включаются в каждую фазу между фазой и землей, а при соединении нагрузки «треугольником» — между фазами. Наиболее предпочтительное место установки варисторов — сразу после коммутационного аппарата со стороны защищаемой нагрузки. Заводом «ПРОГРЕСС» выпускается очень удобный трехфазный ограничитель импульсных напряжений «Импульс-1», который представляет собой устройство для закрепления варисторов на электрощите, содержащее помещенные в корпус приспособления — держатели для трех варисторов, снабженные выводами. Это устройство позволяет легко реализовывать схемы защиты трехфазной нагрузки, соединенной как «звездой», так и «треугольником», а также защищать до трех независимых электроустановок, питающихся от однофазной сети.

Выбор типа используемого варистора и определение его классификационного напряжения осуществляется на основе анализа работы варистора в двух режимах: в рабочем и в импульсном.

1. Анализ работы варистора в рабочем режиме состоит в определении по таблице 1 такого классификационного напряжения, для которого длительное максимальное напряжение на нагрузке наиболее близко к табличному значению, но не превосходит его. Данные таблицы справедливы для варисторов с предельными отклонениями классификационного напряжения не более 10 % . Максимально допустимое длительное действующее переменное напряжение для варисторов зарубежного производства в большинстве случаев указывается в составе маркировки.

2. Анализ работы варистора в импульсном режиме состоит в расчете максимальной мгновенной энергии по формуле:

где E — максимальная мгновенная энергия в джоулях, P — номинальная мощность нагрузки, приходящаяся на одну фазу (Вт), f — частота переменного напряжения (Гц), ? — КПД защищаемой нагрузки. Такие расчеты обычно выполняются для нагрузок в несколько киловатт и более.

По таблице 2 выбирают тип варистора, обеспечивающего рассеивание энергии, значение которой рассчитано по приведенной формуле. .

Источник: www.komi.com

Назначение, характеристики и принцип работы варистора

Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.

Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:

  1. Измерение сопротивления.
  2. Поиск неисправности, исходя из технических характеристик элемента.

В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.

Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.

Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.

Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.

Источник: rusenergetics.ru

Варисторы для защиты бытовых электросетей

В каждом доме есть дорогостоящая электронная техника. Любые приборы на полупроводниковых элементах имеют слабую изоляцию. Так что небольшое повышение напряжение может сжечь электронику. Часто изменение напряжения в бытовых сетях происходит импульсно, то есть напряжение резко повышается на доли секунды, а потом возвращается до нормального уровня.

Импульсы напряжения бывают грозовые и коммутационные.

Грозовые скачки напряжения появляются при ударах молний прямо в электроустановку или линию передачи, или же близко возле них. Грозовые разряды могут причинить вред бытовым сетям, даже если удар в электросеть произойдет на удалении до 20 км.

Коммутационные скачки напряжения создаются при коммутации электрооборудования с реактивными элементами. То есть при включении оборудования, которое построено с использованием большого количества конденсаторов, а также имеет мощные катушки индуктивности и трансформаторы.

Самые высокие коммутационные скачки напряжения создают электродвигатели и конденсаторные батареи.

Для обеспечения надежной защиты от импульсных напряжений должны быть обеспечены три ступени защиты в сетях до 1000 В. В каждой ступени защиты применяются разные по конструкции и по параметрам устройства защиты от импульсных перенапряжений (УЗИП).

Первая ступень защиты должна быть установлена на понижающей подстанции или непосредственно у входа в здание. В качестве УЗИП применяются чаще всего разрядники иногда и мощные варисторы.

Режимы работы УЗИП первой ступени самые тяжелые – величины импульсных токов 25-100 кА, крутизна фронта волны 10/350 мкс, длительность фронта волны 350 мкс. Быстросъемные УЗИП с ножевыми контактами здесь практически не применяются. Потому что импульсные токи величиной 25-50 кА, при разряде молний, создают огромные электродинамические силы, которые легко вырывают съемные части устройства. Кроме того, при разрывании соединения, через воздушный зазор зажигается плазменная дуга, разрушающая ножевые контакты.

Наиболее предпочтительно на первом участке применять воздушные разрядники. Тем более что серийно варисторы для импульсных токов свыше 20 кА не выпускаются. Так как мощные варисторы делаються с большими выводами, которые выполняют роль радиаторов, рассеивая чрезмерное тепло.

Вторая ступень защиты необходима для удаления остаточных, меньших по амплитуде, импульсов после первой ступени. Каждый хозяин дома сам определяет, нужна эта ступень защиты или нет. Устанавливается защита на вводе электричества в дом, в отдельном электрощите.

В качестве УЗИП для второй ступени используются защитные элементы с ножевыми контактами. Внешне защитные элементы с ножевыми контактами представляют собой две отдельные части. Одна часть – гнездо с ножевыми контактами, которое закрепляется на DIN-рейку в электрощите. Другая часть – съемный модуль, который является непосредственно варистором. Защитный варистор должен выдерживать импульсные токи в границе 15-20 кА, с крутизной волны 8/20 мкс. Съемные модули могут быть оснащены индикатором срабатывания, по которому можно определить исправность устройства. Более дорогие модели имеют терморасцепители в своей конструкции, защищающие от перегрева варистор, при длительном протекании импульсных токов.

Третья ступень защиты устанавливается внутри всех электронных бытовых приборов. В качестве УЗИП для бытовых электроприборов применяются только небольшие варисторы, рассчитанные на крутизну волны 1,2/50 мкс, 8/20 мкс и на импульсные токи до 15 кА. Варисторы с монтажными выводами припаиваются внутри прибора на плату или закрепляется отдельно и подключаются отдельными проводами.

Схема включения.

Все варисторы подключаются параллельно нагрузке, правильнее их будет включать между фазовым проводом и проводом заземления.

В трехфазной сети, при подключении нагрузки «звездой», варисторы включаются между каждой фазой и проводом заземления. А при подключении нагрузки «треугольником», варисторы устанавливаются между фазами.

Варисторы, как нелинейные элементы, при повышенном напряжении резко уменьшают свое сопротивление практически до нуля, и поэтому не могут длительно выдерживать повышенные импульсные токи. Поэтому рекомендуется защитить УЗИП второй ступени защиты плавкими предохранителями, которые нужно подключить последовательно с устройством защиты в разрыв фазового провода.

Правильно выбирать варисторы по напряжению срабатывания. При этом напряжении элемент снижает свое сопротивление и гасит опасное импульсное напряжение. Информация о напряжении срабатывания и о крутизне волны импульса наноситься на поверхность варистора или указывается в техническом паспорте к нему.

В тандеме с данной статьей полезно ознакомиться с видео-дополнением:

Источник: volt-index.ru

Как подобрать аналог варистора

В предыдущей статье, посвящённой варисторам, мы рассказали как именно заменить варистор и маркировку варисторов.

Но очень часто нам задают вопрос, каким варистором заменить сгоревший, как подобрать аналог и у всех-ли варисторов одинаковая маркировка.

Подбирать варисторы для замены логичней не по фирме производителю и не по цвету, а по:

Диаметр соответствует способности варистора поглотить определённую мощность импульса, поэтому следует заменять на такой же, или больше.

Напряжение срабатывания можно узнать по маркировке — из таблицы и по нему подобрать аналог из имеющихся.

Если маркировка не сохранилась, то подобрать можно по:

  • функциональному назначению
  • по электронной схеме

К примеру, если он стоит на входе прибора работающего от переменной сети 220 В, то как правило, он рассчитан на классификационное напряжение — 470 В, 560 В реже 430 В.

Это соответствует среднеквадратичному значению переменного напряжения 300 В, 350 В и 275 В соответственно. В подавляющем большинстве случаев ставят на напряжение 470 В, тогда исключаются частые сгорания предохранителя и радиоэлементы платы защищены надёжней.

Параметры и маркировка варисторов разных производителей

Как измерить параметры варистора

Если у вас есть варистор со стёртой маркировкой или такой нет в таблице аналогов, то вполне возможно измерить напряжение срабатывания варистора.

Для этого достаточно подключить его к блоку питания, который может обеспечить необходимое напряжение и у которого можно ограничить максимальный ток, чтобы варистор не разрушился (полярность подключения не имеет значения)

У меня к сожалению такого под рукой не оказалось, поэтому я выбрал другой способ. Я подключил варистор к мегомметру, который измеряет сопротивление высоким напряжением, у данного прибора три предела 250 В, 500 В и 1000 В, что оказалось вполне достаточно.

Я проверял два варистора — на 470 В и на 680 В, первый на пределе 500 В, второй 1000 В.

Как видно на фото, параметры вполне укладываются в допуск 10%.

Перед измерением обязательно прочтите инструкцию к прибору и убедитесь, что данная операция не повредит его, а также соблюдайте все требования по технике безопасности при работе с высоким напряжением.

Источник: masterxoloda.ru

Как варистор защитит бытовую технику от молнии?

Удар молнии в соседнюю опору электропередач или просто рядом с вашим домом событие не очень приятное. Для мастера-электронщика работа в этом случае часто неблагодарная. Не рядовой случай, когда после всех объяснений и рассказов о целесообразности ремонта слышим в конце недовольное: «А почему так дорого?», «А я у другого мастера спросил и мне сказали, что сгореть должно было меньше» и всякий подобный бред жадины-профана, который не ценит чужой труд. Вариант, когда после вскрытия пациента наблюдаем пробитый «трансик» или обугленный варистор много приятнее для обеих сторон.

Современные полупроводники крайне чувствительны к превышениям допустимого напряжения и причина этого не только природные явления. Список причин можно продолжать — от доморощенного сварщика-соседа, до перекомутаций на линии. Нас больше интересует не сами причины, а как с ними бороться. Коротко об этом.

Смешной ответ: «220 вольт», — кому-то не режет слух. Вариант: «Переменный», — тоже не много лучше, потому как без нагрузки тока нет. А какое напряжение? Может быть уже и не 220 вольт – стандарт однако изменился.

Когда мы говорим о напряжении бытовой сети, то речь идёт о действующем значение переменного напряжения – 220 (230) В. Амплитудное значение будет больше приблизительно в 1.4 раза – 311 (325) В. Учитывая допуск в 10 процентов, получим допустимый разброс амплитуды — от 280 до 342 (292 — 358) вольт. Вот эти 358 В – законно допустимая амплитуда переменного напряжения в нашей розетке. Но и это не всё. Может меняться частота, а синусоида не всегда имеет правильную форму. Перенапряжения различной природы суровая реальность и их допустимые параметры тоже регламентируют.

Для этого в цепи питания ставят входные фильтры, разрядники, супрессоры и варисторы (первый эшелон защиты на входе радиоаппаратуры).

Входной LC-фильтр неотъемлемая часть любого импульсного БП (его отсутствие говорит о «качестве» изделия). Основное назначение – не пропускать высокочастотные помехи от работы самого БП в сеть.

Разрядник – устройство с искровым промежутком, может быть как элементом печатного монтажа так и отдельным устройством (газонаполненный, с элементами гашения дуги). Разрядники имеют относительно большое время срабатывания (несколько миллисекунд), при срабатывании искровой промежуток со временем увеличивается из-за обгорания контактов, имеют большой разброс параметров, которые к тому же сильно зависят от внешней среды.

Супрессор (он же защитный диод (стабилитрон), диодный предохранитель, TVS-диод, трансил). В цепи переменного тока используются симметричные супрессоры. При превышении порогового напряжения, внутреннее сопротивление супрессора резко падает. Результат зависит от мощности вредного импульса – нагреется и остынет или сгорит вместе с предохранителем.

Варистор Вольтамперная характеристика (ВАХ) очень похожа на ВАХ супрессора. Соответственно и принцип работы схож. Сопротивление варистора зависит от приложенного к нему напряжения. На участке малых токов (несколько миллиампер) варистор практически не влияет на работу защищаемого устройства. Защитные свойства он проявляет на участке больших токов – когда приложенное к нему напряжение превысит определённый порог.

При превышении этого порога, варистор резко уменьшает собственное сопротивление до десятков ом. Высокочастотные импульсы перенапряжения не проникают на вход устройства, а преобразуются в тепловую энергию нагрева самого варистора. Если энергия этих импульсов больше допустимой, то варистор закорачивает входную цепь и сгорает вместе с плавким предохранителем.

При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При этом через варистор может протекать импульсный ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после исчезновения помехи его сопротивление вновь становится большим. Таким образом, включение варистора параллельно защищаемому устройству не влияет на работу последнего в нормальных условиях, но гасит импульсы опасного напряжения

Знания схемотехники входных цепей питания радиоаппаратуры и принципов работы элементов этих цепей несомненно нужны. Но обычному ремонтёру важнее знать как это проверить и чем заменить. Обугленный варистор потерял свою маркировку и вопрос что ставить взамен возникает не только у новичков (ведь цепи защиты бывают разные). Просто выпаять и забыть – не наш вариант!

Самый распространённый вариант – варистор на 470 вольт. Вспоминаем цифру сверху – 358 вольт в предполагаемом максимуме. Запас 112 вольт? Не совсем так. Варисторы имеют класс точности, и 10 процентов это лучший вариант. Считаем 20 процентов. Получаем возможный нижний предел напряжения срабатывания – 376 вольт. Теперь понятна логика производителя. Но и это не всё. Вариант ставим что есть на складе никто не отменял, главное, чтобы не было ложных срабатываний. Здесь необходимо понимание основного назначения варистора – защита от высоковольтных импульсных перенапряжений. Отвал нулевого провода в вашем доме и в результате неисправная аппаратура, а варистор целый — не редкость. Высоковольтные перенапряжения случайны и результат их воздействия непредсказуем. И если штатно варистор рассеивает высоковольтные импульсы, но когда-то наступает случай, что он не выдерживает мощности паразитного импульса и сгорает. Горит с переходом в проводящее состояние. По этой причине обязательна защита плавким предохранителем. Такая вот обязательная защита защиты.

На практике (особенно для себя любимого) лучше использовать варисторы на 390В или 430В постоянного напряжения. Воздействие высоковольтных импульсов очень не полезно для электролитов (а они чаще всего на 400В, а в дешевом ширпотребе даже на 350В).

Как проверить варистор? Сразу напрашивается вариант собрать простейшую цепь из резистора для ограничения тока, варистора, нагрузки и повышающего трансформатора с возможностью регулирования напряжения. Важно выяснить точно напряжение перехода в проводящее состояние. Вариант проще – подключаем нашу цепочку к мегоометру с напряжением 500 вольт, и убеждаемся в срабатывании варистора. Косвенная проверка – измерить ёмкость варистора. Я не ошибся, именно ёмкость.

Маркировка на варисторе — это не всегда напряжение (иногда это условный код), а если и напряжение то не всегда одно и то же. Разные производители маркируют варисторы по-разному. Используются как максимальное значение рабочего действующего синусоидального напряжения (EPCOS), иногда действующее значение синусоидального напряжения при котором происходит отпирание варистора, а китайцы ставят постоянное напряжение отпирания. Надо обязательно читать документацию конкретного производителя.

Для примера: варистор EPCOS/TDK с маркировкой 241 это фактически аналог 431 у китайского TKS с маркировкой TVR оба отпираются постоянным напряжением около 430В.

Напряжение отпирания варистора величина не точная. Классический разброс составляет -15%. +20%. А у лучших производителей — не менее 10%. И зависимость от температуры никто не отменял.

Отличия варисторов от супрессоров.

Супрессор проигрывает варистору в поглощаемой энергии. Варистор тем и хорош, что тепло в нем выделяется по всей толщине материала и отсутствуют локальные перегревы. Супрессор обладает отличным быстродействием, но легко перегревается и выходит из строя при миллисекундных импульсах. Энергию варистор при коротких перенапряжениях, не рассеивает (не успевает), а поглощает.

Варисторы применяются в схемах с большой мощностью импульса, но относительно низким значением скорости его нарастания (крутизна фронта). К примеру, тиристорные преобразователи.

Супрессоры — в схемах с большей крутизной, но меньшей длительностью. Это преобразователи на основе IGBT или MOSFET-транзисторов. Работа транзисторов в ключевом режиме характеризуется малой длительностью выбросов напряжения (не более сотен нс; очень редко мкс), но при этом крутым фронтом импульса.

Стабилитроны тоже можно применять, то только в низковольтных транзисторных схемах с малыми скоростями изменения напряжения.

Короткие выводы:

1. Варисторы хорошо защищают сети питания радиоаппататуры от коротких высоковольтных выбросов напряжения, которые физически не поглощаются входными фильтрующими конденсаторами. Но не являются защитой от перенапряжений ниже напряжения открывания самого варистора.

2. Супрессоры хорошо использовать для защиты силовых ключей от переходных процессов и пиковых перенапряжений короткими импульсами.

3. При выборе варистора в качестве замены ориентируемся на напряжение открывания варистора. Обращать внимание на производителя, смотреть документацию по конкретному прибору.

4. Для защиты от перенапряжений в сети (не высоковольтных импульсных) хорошее решение применять ограничители напряжения и ограничители тока короткого замыкания (это для себя, а клиенту как совет).

P.S Всё, что выше никак не учебник и не претендует на полноту. Целенаправленно не перечислены все параметры рассмотренных элементов. Замечания на рассмотренную тему будут полезны не только автору.

Источник: sw19.ru

Как подобрать аналог варистора

В предыдущей статье, посвящённой варисторам, мы рассказали как именно заменить варистор и маркировку варисторов.

Но очень часто нам задают вопрос, каким варистором заменить сгоревший, как подобрать аналог и у всех-ли варисторов одинаковая маркировка.

Подбирать варисторы для замены логичней не по фирме производителю и не по цвету, а по:

  • напряжению 
  • диаметру.

Диаметр соответствует способности варистора поглотить определённую мощность импульса, поэтому следует заменять на такой же, или больше.

Напряжение срабатывания можно узнать по маркировке - из таблицы и по нему подобрать аналог из имеющихся.

 Если маркировка не сохранилась, то подобрать можно по:

  • функциональному назначению
  • по электронной схеме

К примеру, если он стоит на входе прибора работающего от переменной сети 220 В, то как правило, он рассчитан на классификационное напряжение - 470 В, 560 В реже 430 В.

Это соответствует среднеквадратичному значению переменного напряжения 300 В, 350 В и 275 В соответственно. В подавляющем большинстве случаев ставят на напряжение 470 В, тогда исключаются частые сгорания предохранителя и радиоэлементы платы защищены надёжней.

 

Параметры и маркировка варисторов разных производителей

 

 

Как измерить параметры варистора

 

Если у вас есть варистор со стёртой маркировкой или такой нет в таблице аналогов, то вполне возможно измерить напряжение срабатывания варистора.

Для этого достаточно подключить его к блоку питания, который может обеспечить необходимое напряжение и у которого можно ограничить максимальный ток, чтобы варистор не разрушился (полярность подключения не имеет значения)

У меня к сожалению такого под рукой не оказалось, поэтому я выбрал другой способ. Я подключил варистор к мегомметру, который измеряет сопротивление высоким напряжением, у данного прибора три предела 250 В, 500 В и 1000 В, что оказалось вполне достаточно.

Я проверял два варистора - на 470 В и на 680 В, первый на пределе 500 В, второй 1000 В.

Как видно на фото, параметры вполне укладываются в допуск 10%.

Перед измерением обязательно прочтите инструкцию к прибору и убедитесь, что данная операция не повредит его, а также соблюдайте все требования по технике безопасности при работе с высоким напряжением.

Как варистор защитит бытовую технику от молнии? SW19.ru

Удар молнии в соседнюю опору электропередач или просто рядом с вашим домом событие не очень приятное. Для мастера-электронщика работа в этом случае часто неблагодарная. Не рядовой случай, когда после всех объяснений и рассказов о целесообразности ремонта слышим в конце недовольное: «А почему так дорого?», «А я у другого мастера спросил и мне сказали, что сгореть должно было меньше» и всякий подобный бред жадины-профана, который не ценит чужой труд. Вариант, когда после вскрытия пациента наблюдаем пробитый "трансик" или обугленный варистор много приятнее для обеих сторон.

Современные полупроводники крайне чувствительны к превышениям допустимого напряжения и причина этого не только природные явления. Список причин можно продолжать - от доморощенного сварщика-соседа, до перекомутаций на линии. Нас больше интересует не сами причины, а как с ними бороться. Коротко об этом.

Начнём с исходных данных. Какой ток в розетке?

Смешной ответ: «220 вольт», - кому-то не режет слух. Вариант: «Переменный», - тоже не много лучше, потому как без нагрузки тока нет. А какое напряжение? Может быть уже и не 220 вольт – стандарт однако изменился.

Когда мы говорим о напряжении бытовой сети, то речь идёт о действующем значение переменного напряжения – 220 (230) В. Амплитудное значение будет больше приблизительно в 1.4 раза – 311 (325) В. Учитывая допуск в 10 процентов, получим допустимый разброс амплитуды - от 280 до 342 (292 - 358) вольт. Вот эти 358 В – законно допустимая амплитуда переменного напряжения в нашей розетке. Но и это не всё. Может меняться частота, а синусоида не всегда имеет правильную форму. Перенапряжения различной природы суровая реальность и их допустимые параметры тоже регламентируют.

И наша бытовая техника проектируется с учётом возможности эти перепады выдерживать (хотелось бы верить что это так).

Для этого в цепи питания ставят входные фильтры, разрядники, супрессоры и варисторы (первый эшелон защиты на входе радиоаппаратуры).

Входной LC-фильтр неотъемлемая часть любого импульсного БП (его отсутствие говорит о «качестве» изделия). Основное назначение – не пропускать высокочастотные помехи от работы самого БП в сеть.

Разрядник – устройство с искровым промежутком, может быть как элементом печатного монтажа так и отдельным устройством (газонаполненный, с элементами гашения дуги). Разрядники имеют относительно большое время срабатывания (несколько миллисекунд), при срабатывании искровой промежуток со временем увеличивается из-за обгорания контактов, имеют большой разброс параметров, которые к тому же сильно зависят от внешней среды.

Супрессор (он же защитный диод (стабилитрон), диодный предохранитель, TVS-диод, трансил). В цепи переменного тока используются симметричные супрессоры. При превышении порогового напряжения, внутреннее сопротивление супрессора резко падает. Результат зависит от мощности вредного импульса – нагреется и остынет или сгорит вместе с предохранителем.

Варистор Вольтамперная характеристика (ВАХ) очень похожа на ВАХ супрессора. Соответственно и принцип работы схож. Сопротивление варистора зависит от приложенного к нему напряжения. На участке малых токов (несколько миллиампер) варистор практически не влияет на работу защищаемого устройства. Защитные свойства он проявляет на участке больших токов – когда приложенное к нему напряжение превысит определённый порог.

При превышении этого порога, варистор резко уменьшает собственное сопротивление до десятков ом. Высокочастотные импульсы перенапряжения не проникают на вход устройства, а преобразуются в тепловую энергию нагрева самого варистора. Если энергия этих импульсов больше допустимой, то варистор закорачивает входную цепь и сгорает вместе с плавким предохранителем.

При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При этом через варистор может протекать импульсный ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после исчезновения помехи его сопротивление вновь становится большим. Таким образом, включение варистора параллельно защищаемому устройству не влияет на работу последнего в нормальных условиях, но гасит импульсы опасного напряжения

Знания схемотехники входных цепей питания радиоаппаратуры и принципов работы элементов этих цепей несомненно нужны. Но обычному ремонтёру важнее знать как это проверить и чем заменить. Обугленный варистор потерял свою маркировку и вопрос что ставить взамен возникает не только у новичков (ведь цепи защиты бывают разные). Просто выпаять и забыть – не наш вариант!

Самый распространённый вариант – варистор на 470 вольт. Вспоминаем цифру сверху – 358 вольт в предполагаемом максимуме. Запас 112 вольт? Не совсем так. Варисторы имеют класс точности, и 10 процентов это лучший вариант. Считаем 20 процентов. Получаем возможный нижний предел напряжения срабатывания – 376 вольт. Теперь понятна логика производителя. Но и это не всё. Вариант ставим что есть на складе никто не отменял, главное, чтобы не было ложных срабатываний. Здесь необходимо понимание основного назначения варистора – защита от высоковольтных импульсных перенапряжений. Отвал нулевого провода в вашем доме и в результате неисправная аппаратура, а варистор целый - не редкость. Высоковольтные перенапряжения случайны и результат их воздействия непредсказуем. И если штатно варистор рассеивает высоковольтные импульсы, но когда-то наступает случай, что он не выдерживает мощности паразитного импульса и сгорает. Горит с переходом в проводящее состояние. По этой причине обязательна защита плавким предохранителем. Такая вот обязательная защита защиты.

На практике (особенно для себя любимого) лучше использовать варисторы на 390В или 430В постоянного напряжения. Воздействие высоковольтных импульсов очень не полезно для электролитов (а они чаще всего на 400В, а в дешевом ширпотребе даже на 350В).

Варисторы имеют достаточно большую емкость (до 50 нф), что ограничивает их применение на высоких частотах.

Как проверить варистор? Сразу напрашивается вариант собрать простейшую цепь из резистора для ограничения тока, варистора, нагрузки и повышающего трансформатора с возможностью регулирования напряжения. Важно выяснить точно напряжение перехода в проводящее состояние. Вариант проще – подключаем нашу цепочку к мегоометру с напряжением 500 вольт, и убеждаемся в срабатывании варистора. Косвенная проверка – измерить ёмкость варистора. Я не ошибся, именно ёмкость.

Маркировка на варисторе - это не всегда напряжение (иногда это условный код), а если и напряжение то не всегда одно и то же. Разные производители маркируют варисторы по-разному. Используются как максимальное значение рабочего действующего синусоидального напряжения (EPCOS), иногда действующее значение синусоидального напряжения при котором происходит отпирание варистора, а китайцы ставят постоянное напряжение отпирания. Надо обязательно читать документацию конкретного производителя.

Для примера: варистор EPCOS/TDK с маркировкой 241 это фактически аналог 431 у китайского TKS с маркировкой TVR оба отпираются постоянным напряжением около 430В.

Напряжение отпирания варистора величина не точная. Классический разброс составляет -15%...+20%. А у лучших производителей - не менее 10%. И зависимость от температуры никто не отменял.

Отличия варисторов от супрессоров.

Супрессор проигрывает варистору в поглощаемой энергии. Варистор тем и хорош, что тепло в нем выделяется по всей толщине материала и отсутствуют локальные перегревы. Супрессор обладает отличным быстродействием, но легко перегревается и выходит из строя при миллисекундных импульсах. Энергию варистор при коротких перенапряжениях, не рассеивает (не успевает), а поглощает.

Крутизна характеристики варистора довольно большая (но меньше чем у супрессоров).

Варисторы применяются в схемах с большой мощностью импульса, но относительно низким значением скорости его нарастания (крутизна фронта). К примеру, тиристорные преобразователи.

Супрессоры - в схемах с большей крутизной, но меньшей длительностью. Это преобразователи на основе IGBT или MOSFET-транзисторов. Работа транзисторов в ключевом режиме характеризуется малой длительностью выбросов напряжения (не более сотен нс; очень редко мкс), но при этом крутым фронтом импульса.

Стабилитроны тоже можно применять, то только в низковольтных транзисторных схемах с малыми скоростями изменения напряжения.

Короткие выводы:

1. Варисторы хорошо защищают сети питания радиоаппататуры от коротких высоковольтных выбросов напряжения, которые физически не поглощаются входными фильтрующими конденсаторами. Но не являются защитой от перенапряжений ниже напряжения открывания самого варистора.

2. Супрессоры хорошо использовать для защиты силовых ключей от переходных процессов и пиковых перенапряжений короткими импульсами.

3. При выборе варистора в качестве замены ориентируемся на напряжение открывания варистора. Обращать внимание на производителя, смотреть документацию по конкретному прибору.

4. Для защиты от перенапряжений в сети (не высоковольтных импульсных) хорошее решение применять ограничители напряжения и ограничители тока короткого замыкания (это для себя, а клиенту как совет).

P.S Всё, что выше никак не учебник и не претендует на полноту. Целенаправленно не перечислены все параметры рассмотренных элементов. Замечания на рассмотренную тему будут полезны не только автору.

Что такое варистор и для чего он нужен?

Рассмотрение конструкции, принципа работы и назначения варисторов. Как выбрать варистор и какие характеристики у этого защитного элемента.


В электронике можно выделить группу компонентов, задача которых ограничение всплесков напряжения. Один из таких элементов — варистор. Чаще всего данный аппарат можно встретить в большинстве хороших блоков питания. В этой статье мы поговорим о том, как работают и где применяются варисторы. Содержание:

Принцип действия

Варистор — это полупроводниковый прибор с симметричной нелинейной вольтамперной характеристикой. По ее форме можно сделать вывод о том, что варистор работает и в переменном и в постоянном токе. Рассмотрим её подробнее.

В нормальном состоянии ток через варистор предельно мал, его называют током утечки. Его можно рассматривать как диэлектрический компонент с определенной электрической емкостью и можно говорить, что он не пропускает ток. Но, при определенном напряжении (на картинке это + — 60 Вольт) он начинает пропускать ток.

Другими словами, принцип работы варистора в защитных цепях напоминает разрядник, только в полупроводниковом приборе не возникает дугового разряда, а изменяется его внутреннее сопротивление. При уменьшении сопротивления, ток с единиц микроампер возрастает до сотен или тысяч Ампер.

Условное графическое изображение варистора в схемах:

Обозначение элемента на схемах напоминает обычный резистор, но перечеркнутый по диагонали линией, на которой может быть нанесена буква U. Чтобы найти на плате или в схеме этот элемент – обращайте внимание на подписи, чаще всего они обозначаются, как RU или VA.

Внешний вид варистора:

Варистор устанавливают параллельно цепи для ее защиты. Поэтому при импульсе напряжения защищаемой цепи — энергия поступает не в устройство, а рассеивается в виде тепла на варисторе. Если энергия импульса слишком велика — варистор сгорит. Но понятие сгорит размазано, варианта развития два. Либо варистор просто разорвет на части, либо его кристалл разрушится, а электроды замкнутся накоротко. Это приведет к тому, что выгорят дорожки и проводники, или произойдет возгорание элементов корпуса и других деталей.

Чтобы этого избежать перед варистором, последовательно со всей цепью на сигнальный или питающий провод устанавливают предохранитель. Тогда в случае сильного импульса напряжения и долговременного срабатывания или перегорания варистора сгорит и предохранитель, разорвав цепь.

Если сказать вкратце, для чего нужен такой компонент — его свойства позволяют защитить электрическую цепь от губительных всплесков напряжения, которые могут возникать как на информационных линиях, так и на электрических линиях, например, при коммутации мощных электроприборов. Мы обсудим этот вопрос немного ниже.

Устройство

Варисторы устроены достаточно просто — внутри есть кристалл полупроводникового материала, чаще всего это Оксид Цинка (ZiO) или Карбид Кремния (SiC). Прессованный порошок этих материалов подвергают высокотемпературной обработке (запекают) и покрывают диэлектрической оболочкой. Встречаются либо в исполнении с аксиальными выводами, для монтажа в отверстия на печатной плате, а также в SMD-корпусе.

На рисунке ниже наглядно изображено внутреннее устройство варистора:


Основные параметры

Чтобы правильно подобрать варистор, нужно знать его основные технические характеристики:

  1. Классификационное напряжение, может обозначаться как Un. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА, при дальнейшем превышении ток лавинообразно увеличивается. Именно этот параметр указывают в маркировке варистора.
  2. Номинальная рассеиваемая мощность P. Определяет, сколько может рассеять элемент с сохранением своих характеристик.
  3. Максимальная энергия одиночного импульса W. Измеряется в Джоулях.
  4. Максимальный ток Ipp импульса. При том что фронт нарастает в течении 8 мкс, а общая его длительность — 20 мкс.
  5. Емкость в закрытом состоянии — Co. Так как в закрытом состоянии варистор представляет собой подобие конденсатора, ведь его электроды разделены непроводящим материалом, то у него есть определенная емкость. Это важно, когда устройство применяется в высокочастотных цепях.

Также выделяют и два вида напряжений:

  • Um~ — максимальное действующее или среднеквадратичное переменное;
  • Um= — максимальное постоянное.

Маркировка и выбор варистора

На практике, например, при ремонте электронного устройства приходится работать с маркировкой варистора, обычно она выполнена в виде:

20D 471K

Что это такое и как понять? Первые символы 20D — это диаметр. Чем он больше и чем толще — тем большую энергию может рассеять варистор. Далее 471 — это классификационное напряжение.

Могут присутствовать и другие дополнительные символы, обычно указывают на производителя или особенность компонента.

Теперь давайте разберемся как правильно выбрать варистор, чтобы он верно выполнял свою функцию. Чтобы подобрать компонент, нужно знать в цепи с каким напряжением и родом тока он будет работать. Например, можно предположить, что для защиты устройств, работающих в цепи 220В нужно применять варистор с классификационным напряжением немного выше (чтобы срабатывал при значительных превышениях номинала), то есть 250-260В. Это в корне не верно.

Дело в том, что в цепях переменного тока 220В — это действующее значение. Если не углубляться в подробности, то амплитуда синусоидального сигнала в корень из 2 раз больше чем действующее значение, то есть в 1,41 раза. В результате амплитудное напряжение в наших розетках равняется 300-310 В.

240*1,1*1,41=372 В.

Где 1,1 – коэффициент запаса.

При таких расчетах элемент начнет срабатывание при скачке действующего напряжения больше 240 Вольт, значит его классификационное напряжение должно быть не менее 370 Вольт.

Ниже приведены типовые номиналы варисторов для сетей переменного тока с напряжением в:

  • 100В (100~120)– 271k;
  • 200В (180~220) – 431k;
  • 240В (210~250) – 471k;
  • 240В (240~265) – 511k.

Применение в быту

Назначение варисторов — защита цепи при импульсах и перенапряжениях на линии. Это свойство позволило рассматриваемым элементам найти свое применение в качестве защиты:

  • линий связи;
  • информационных входов электронных устройств;
  • силовых цепей.

В большинстве дешевых блоков питания не устанавливают никаких защит. А вот в хороших моделях по входу устанавливают варисторы.

Кроме того, все знают, что компьютер нужно подключать к питанию через специальный удлинитель с кнопкой — сетевой фильтр. Он не только фильтрует помехи, в схемах нормальных фильтров также устанавливают варисторы.

Часто электрики рекомендуют защитить китайские светодиодные лампы, установив варистор параллельно патрону. Также защищают и другие устройства, некоторые монтируют варистор в розетку или в вилку, чтобы обезопасить подключаемую технику.

Чтобы защитить всю квартиру — вы можете установить варистор на дин-рейку, в хороших устройствах в корпусе расположены настоящие мощные варисторы диаметром с кулак. Примером такого устройства является ОИН-1, который изображен на фото ниже:

В заключение хотелось бы отметить, что назначение варистора – защитить какую-либо электрическую цепь. Принцип работы основан на изменении сопротивления полупроводниковой структуры под воздействием высокого напряжения. Напряжение, при котором через элемент начинает течь ток силой 1 мА называют классификационным. Это и диаметр элемента есть основными параметрами при выборе. Пожалуй, мы доступно объяснили, что такое варистор и для чего он нужен, задавайте вопросы в комментариях, если вам что-то непонятно.

Напоследок рекомендуем просмотреть полезные видео по теме статьи:

Наверняка вы не знаете:

  • Какие бывают помехи в электросети
  • Принцип работы УЗИП
  • Как сделать сетевой фильтр своими руками
  • Как проверить резистор в домашних условиях


Нравится0)Не нравится0)

Сетевые фильтры - как они работают, примеры схем

Что такое сетевой фильтр? - это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).

Основная задача фильтра - пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.

Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20...40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) - вот и помеха!

Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).

Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.

Рис. 1. Напряжения с последующим всплеском.

Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.

Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).

Но наиболее опасными для аппаратуры являются все же импульсные помехи.

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” - “ноль” (“нейтраль”) - “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача - подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, C3, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль" - “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай - подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это - идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный - выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удли

Как работают сетевые фильтры и предохранители?

Криса Вудфорда. Последнее изменение: 23 января 2020 г.

При ударе молнии захватывающе и волнительно, но это страшно слишком. Страшно, потому что опасно: прыгающие молнии содержат огромное количество электрической энергии которые выпущены в доли секунды. Если рядом с вашим домом ударит молния, все это электричество должно куда-то уходить. Один место, куда он может пойти, это через система электропроводки в вашем доме, повреждая или разрушая любые электрические элементы, которые подключены в то время.Почти невозможно не дать молнии повредить ваши вещи, и это как правило, лучше всего отключать все, что можно, перед бурей прибывает. Еще одна полезная вещь, которую вы можете сделать - это установить Surge протекторы . Эти дешевые компактные кубики и удлинители помогают выровнять внезапные пики электричества в электросети и уменьшить вероятность повреждения чувствительного электронного оборудования. Рассмотрим подробнее как они работают.

Фото: Электрический огонь! Хотя цифры варьируются от страны к стране и из года в год, электрические сбои или неисправности обычно вызывают от четверти до половины всех пожаров; сетевые фильтры и предохранители помогают снизить риск.Фотография стажера-пожарного тушит электрический огонь с помощью углекислый газ от Уильяма Кенни любезно предоставлен ВМС США.

Что такое скачки напряжения?

Фото: Типичный британский сетевой фильтр, встроенный в куб. Это сделано Belkin, вероятно, самой известной марки; другие популярные марки включают APC, Ativa и Hubbell. Обратите внимание на световые индикаторы наверху, оба из которых должны быть освещены, чтобы подтвердить, что протектор работает.Тот самый слева горит зеленым, показывая, что прибор защищен. Тот, что справа (с пометкой «Заземлен» или «Питание») подтверждает, что питание включено.

Если вы читали нашу длинную статью об электричестве, вы будете знать, что электрический ток - это поток электронов (крошечных частиц внутри атомов), переносящих энергию через металл или другое вещество в петле, называемой схемой . Вы также знайте, что электричество может быть чрезвычайно опасным: это не что-то возиться, если вы цените свою жизнь.Электричество, которое приходит наши дома от электростанций путешествуют по невероятно высокое напряжение, потому что это помогает экономить энергию. Трансформеры на подстанциях рядом со зданиями преобразует мощность высокого напряжения в более низкое напряжение, чем бытовой техникой в ​​наших домах можно спокойно пользоваться. Различная техника нужна большее или меньшее количество электроэнергии. Вещи, которые становятся горячими (электрические души, тостеры и печи) нуждаются в больших токах, которые одновременно обеспечивают большую мощность, тогда как электронное оборудование (проигрыватели компакт-дисков, телевизоры и т. д.) требует гораздо меньших токов и потребляет меньше энергии.Все эти устройства предполагают, что электричество, поступающее в в вашем доме достаточно постоянное напряжение .

Фото: еще один снимок сетевого фильтра Belkin в его розничной упаковке.

Но иногда напряжение колеблется из-за резких изменений в способе подачи энергии из сети. Или это может случиться если кто-то на ближайшей фабрике включает или выключает огромный прибор с мощным электродвигателем внутри него, что может вызвать внезапный скачок или падение напряжения во всей цепи в вашем доме.Очень Кратковременное изменение напряжения называется скачком . Более продолжительное изменение называется скачком . Скачок или скачок напряжения, вероятно, не повлияет на другие крупные приборы, но может повредить крошечные компоненты чувствительного электронного оборудования. Нам нужно что-то, что сглаживает любые пики напряжения - и это то, что делают устройства защиты от перенапряжения.

Как работают сетевые фильтры

Используемые вами приборы питаются от розеток в стене. Электроэнергия от розеток подается прямо в прибор по длина кабеля.В устройстве защиты от перенапряжения основная линия электропередачи (известная как провод под напряжением или провод под напряжением ) имеет дополнительное соединение (a своего рода "проселочная дорога"), связанная с ней, которая ведет к земле провод (иногда также называемый Заземляющий провод ; защитный провод в электрической цепи, которая безопасно передает любой нежелательный ток в землю). Обычно импульсное соединение неактивно. Однако, если появляется напряжение, превышающее нормальное, и производит слишком много электрический ток, избыточный ток безопасно отводится в сторону дорога к земле.Это означает, что в ваш прибор, поэтому он лучше защищен от повреждений.

Как устройство для защиты от перенапряжения узнает, когда нужно отвести ток? это фактически устройство под названием варистор (зависит от напряжения резистор), сделанный из вещества, называемого оксидом металла полупроводник что обычно плохо проводник (переносчик) электричества. Когда чрезмерное напряжение Полупроводник в варисторе становится хорошим проводником и начинает нормально проводить электричество.Пока волна напряжение сохраняется, полупроводник направляет опасный ток на землю. Как только все возвращается в норму, полупроводник снова переключается.

Все это означает, что ваш прибор защищен не только во время скачок напряжения - он должен продолжать нормально работать.

Изображение: Изображение слева: Без сетевого фильтра соединения "горячий / активный" (коричневый) и нейтраль (синий) обеспечивают питание вашего прибор. Заземление (зеленое) обычно подключается к металлический корпус, чтобы обеспечить безопасный выход паразитных токов, но это не участвует в подаче питания на прибор.Правое изображение: с сетевым фильтром есть дополнительное соединение токоведущего / токоведущего провода на землю. Если всплеск ток течет по горячему / находящемуся под напряжением проводу, любой избыточный ток безопасно отведен вокруг импульсного провода (красный) на землю / землю. NB: Это пример показывает типичную британскую проводку.

Почему сетевые фильтры не обеспечивают полной защиты

Важно отметить, что сетевые фильтры не дают вам полной охрана. Прямой удар молнии - это абсолютно массивный разряд электричество; сетевой фильтр, вероятно, не остановит такой огромный скачок напряжения от повреждения вещей в вашем доме.Ограничители перенапряжения также имеют ограниченную ценность, когда скачки напряжения длятся некоторое время. и они не защищают от более высоких, чем ожидалось, токов от Энергосистема.

Что такое предохранители?

Фото: Предохранитель внутри электрической вилки (подключен к электросети Великобритании). Предохранитель - коричневый вертикальный цилиндр справа. Он находится последовательно между коричневым (живым) проводом. и источник питания: другими словами, ток от источника должен пройти через предохранитель, чтобы пройти по коричневому проводу.Этот конкретный предохранитель рассчитан на 13 ампер, что является максимально возможным током, который должен выдерживать любой подобный прибор. Для небольших бытовых приборов чаще используются предохранители на 3 или 5 А.

Когда предохранитель перегорает, часто можно услышать, как он перегорел с резким ТРЕЩИНА! это погружает ваш дом во внезапную тьму. Когда это происходит поздно ночью, это очень неприятно, но есть альтернатива. хуже. Если бы у нас не было предохранителей, электрические неисправности могли вызвать возгорание в наших домах и сожги их дотла.Слава богу, за эти крошечные электрические протекторы, которые защищают нас. Давай узнаем что они есть и как они работают!

Зачем нужны предохранители?

По целому ряду непредсказуемых причин кабели, идущие к электроприборам, могут внезапно оказаться имеют гораздо больший ток, чем следовало бы. Если бы у нас не было предохранителей, эти высокие токи могли бы повредить наши телевизоры, радио, компьютеры, и электрические лампочки, которые могут вызвать пожары и, возможно, даже поставить под угрозу жизнь.Предохранитель защищает электроприборы блокируя токи, которые больше, чем они должны быть.

Как работают предохранители

Фото: Внутри предохранителя. Если вы сломаете предохранитель картриджа, вы обнаружите вот что: тонкий проводящий провод посередине, по которому проходит ток, окруженный довольно толстым изолирующим керамическим корпусом. Керамика предназначена для защиты вилки (или другое оборудование, внутри которого установлен предохранитель) от тепла и возгорания при протекании сильного тока.

Вы, наверное, знаете, что провода нагреваются, когда идет электричество. через них. Так работают обычные лампы накаливания. Электричество течет по очень тонкому проводу, который называется нитью . он такой горячий, что испускает свет. Та же идея работает в электрический тостер. Здесь электричество протекает через серию тонких металлические ленты, делая их такими горячими, что они выделяют достаточно тепла, чтобы приготовить хлеб. Предохранитель точно такой же. Это тонкий кусок проволоки разработан для проведения ограниченного электрического тока.Если вы попытаетесь пройти более высокий ток через провод, он нагревается так сильно, что горит или тает. Когда он тает, он разрывает цепь, к которой подключен, и останавливает ток.

Мы устанавливаем предохранители в разных местах дома. В некоторых странах, например, в Великобритании, предохранители вставляются в вилки на всех устройствах, подключается к электрической розетке. Разные приборы рисуют разные количество тока, поэтому электрическому тостеру потребуется более мощный предохранитель (обычно 13 ампер), чем электрический свет (обычно всего 3 ампера).

Типы блоков предохранителей

Фото: старомодный блок предохранителей. У этого есть четыре плавких предохранителя внутри четырех коричневых бакелитов. держатели предохранителей, каждый предохранитель защищает отдельную цепь внутри дома. Если один предохранитель перегорит, остальные три останутся нетронутыми. Все питание можно включать и выключать с помощью маленького красного переключателя справа. Это переключает все четыре цепи включено или выключено одновременно.

Есть также предохранители, установленные на стыке, где главный в ваш дом поступает электричество.Это перекресток . блок , блок предохранителей , или иногда (более расплывчато) потребительский блок . Он делит входящую электроэнергию на ряд разделяет цепи и подает их в разные части вашего дома. А мощная цепь питает большие предметы, такие как электрические плиты, в то время как цепи с более низким номиналом питают лампы и другие приборы. Имея разные части вашего дома на отдельных цепях означает, что сбой в одной цепи не останавливает работу других.

Обычно каждая электрическая цепь в вашем доме оснащена собственным предохранителем. В старых блоках предохранителей плавкий предохранитель представляет собой просто подключенный голый кусок провода. между двумя терминалами. Более свежие блоки предохранителей имеют заменяемые патронные предохранители с плавким проводом, встроенным в стеклянный или керамический цилиндр, который вы можете легко вставлять и снимать. Новейшие блоки предохранителей избавляются от плавкие предохранители и вместо них есть выключатели. В случае неисправности блок предохранителей мгновенно обнаруживает проблему, а аварийный выключатель автоматически отключает все затронутые цепи.однажды вы определили и решили проблему, вы можете просто перевернуть переключитесь обратно, чтобы питание снова заработало.


Фото: В современном блоке предохранителей, подобном этому, производства Wylex, вместо него используются выключатели. провода предохранителя или патронов. На первом фото показан весь блок предохранителей; второй показывает крупный план выключателей отключения. Если в одной из цепей протекает слишком большой ток, переключатель для этого цепь переворачивается и отключает электричество. Вы можете восстановить питание, снова повернув выключатель (после исправление того, что вызвало проблему).Половина цепей в этом блоке предохранителей оснащена автоматическими УЗО (устройство остаточного тока), которое значительно снижает риск поражения электрическим током при случайном разрезании силовых кабелей.

Какой предохранитель использовать?

Фото: два стеклянных цилиндрических предохранителя на 30 ампер из бытового блока предохранителей. Вы Никогда не нужны такие большие предохранители в одиночной бытовой технике.

Если вам нужно заменить предохранитель, как правило, можно заменить тот, который вы вынули. другой такой же номинал (13 ампер на 13 ампер, 3 ампер на 3 ампер или 5 ампер на 5 ампер).Но это всегда полезно проверить: большинство приборов (или их инструкции по эксплуатации) подскажут, какой предохранитель вы используете. нужно. Иногда можно работать инстинктивно: большие приборы, которые нагревают предметы, например, электрические чайники или электрические камины, потребляют большой ток и требуют больших предохранителей; небольшая техника, которая Используйте меньшие токи, например настольные лампы или зарядные устройства для мобильных телефонов, потребуются только небольшие предохранители. Если вы вставляете небольшой предохранитель в прибор, потребляющий большой ток, предохранитель сгорит довольно быстро и остановите работу вашего прибора; если вы поместите большой предохранитель в прибор, тока, вы мешаете предохранителю работать и подвергаете себя риску.

Вы также можете рассчитать требуемый предохранитель, исходя из номинальной мощности вашего устройства и напряжения. источника питания, поскольку мощность, напряжение и ток связаны простым уравнением: мощность (ватт) = напряжение (вольты) × ток (амперы). Итак, чтобы найти номинал предохранителя (который должен быть выше, чем текущий прибор рисует), просто разделите номинальную мощность вашего прибора на напряжение. Например, если вы живете в Великобритании и у вас есть электрический чайник на 2500 ватт и источник питания на 240 вольт, вы можете видеть, что ваш чайник будет используйте ток 2500, разделенный на 240 или приблизительно 10.5 ампер, значит вам понадобится предохранитель на 13 ампер. Если у вас есть настольная лампа со старомодной лампочкой на 60 Вт, она будет использовать 60/240 = 0,25 А, поэтому предохранитель на 3 ампера - это то, что вам нужно. Вот краткое описание того, как это работает для источников питания 240 вольт:

Номинал предохранителя Номинальная мощность (при питании 240 В)
3 А До 720 Вт.
5 А 720–1200 Вт
13 А Более 1200 Вт

В случае сомнений всегда используйте предохранитель наименьшего размера ; худшее, что случится в том, что предохранитель перегорит, если ток будет слишком большим.Если вы используете слишком большой предохранитель, он не защитите свой прибор от чрезмерных токов, и вы можете поставить себя, свой дом и свою жизнь рискованно.

В чем разница между сетевым фильтром и предохранителем?

Предохранитель

A предназначен для предотвращения внезапного возникновения сильных электрических токов от повреждения оборудование в вашем доме. Звучит так же, как сетевой фильтр, не так ли? Но на самом деле это работает иначе. Большинство предохранителей очень тонкие кусочки проволоки, рассчитанные на пропускание только большого тока через них.Чем толще провод, тем больше тока может течь; так предохранители рассчитанные на более высокие токи, обычно имеют внутри более толстые куски провода их.

Как работает предохранитель? Если ток слишком большой (например, если вы соединили в одну розетку слишком много приборов) предохранитель буквально сгорает выход: провод становится настолько горячим, что плавится и прерывает цепь, чтобы защитить тебя. Иногда предохранители действительно «перегорают»: ток протекает через них настолько велико, что они мгновенно выгорают с громким треском.Таким образом, предохранитель - это очень радикальная форма защита: в случае чего отключает электричество полностью. Сетевой фильтр предназначен для сглаживания небольших колебания напряжения, и он обычно не отключает цепь когда возникает проблема. Вам нужны как предохранители, так и сетевые фильтры. защита от электрических проблем. Действительно, если вы посмотрите на спину типичный сетевой фильтр, вы, скорее всего, найдете ... заменяемый предохранитель!

.

Как использовать устройства защиты от электростатического разряда / перенапряжения: дисковые варисторы | Технические заметки

Преимущества различных типов варисторов

Варисторы

могут использоваться в качестве подавителей для защиты устройств и цепей от переходных аномальных напряжений, включая электростатический разряд (электростатический разряд) и удар молнии.
Для защиты от относительно большого импульсного тока (от 100А до 25кА) подходят дисковые варисторы с выводами и дисковые варисторы SMD. Для защиты от повышенного импульсного тока (примерно 25 кА и более) подходят блочные варисторы и ленточные варисторы.

Ниже приведены подробные приложения.



Пример применения: Защита от перенапряжения для входной части импульсного источника питания

Различные типы небольших, легких и высокоэффективных импульсных источников питания часто используются в качестве источников питания электронных устройств. В импульсном источнике питания перед силовой цепью размещается ЭМС-фильтр для предотвращения шума проводимости, который проникает через силовую линию.Однако, поскольку грозовые и коммутационные перенапряжения нельзя предотвратить только с помощью фильтра ЭМС, схема защиты от перенапряжения с использованием дисковых варисторов размещается перед фильтром ЭМС. Комбинации с разрядниками для защиты от перенапряжений и другими устройствами, а также конфигурации их схем различаются. Подобные схемы защиты встроены в адаптеры переменного тока, которые используются для портативных компьютеров и т.п. Варисторы также используются для удлинителей и настенных розеток с молниезащитой.

Рис.1 Пример схемы защиты от перенапряжения для импульсного блока питания

Пример приложения: Защита от перенапряжения для светодиодной системы освещения

Светодиодная система освещения состоит из светодиодных матриц с несколькими подключенными светодиодами, драйвера (схемы управления), схемы управления и источника питания светодиодов, а также подсистем, включая источник питания для связи. Многие варисторы микросхемы используются для защиты от электростатических разрядов и защиты от перенапряжения для интерфейсной части, а варисторы необходимы для защиты от электростатических разрядов.Светодиод - это устройство, в котором используется полупроводник, и без защиты он может быть разрушен электростатическим разрядом или скачком напряжения. По этой причине варистор устанавливается параллельно светодиодному устройству.

Рис.2 Защита светодиодного устройства в системе светодиодного освещения

Пример применения: Защита от перенапряжения для индуктивных нагрузок, таких как двигатели

В момент отключения питания устройств с индуктивными нагрузками, использующими катушки, такие как двигатели, соленоиды и электромагнитные клапаны, устройства разряжают магнитную энергию, которая была накоплена в качестве противодействующей электродвижущей силы, и генерируют большое импульсное напряжение.Для защиты устройств от скачков напряжения параллельно нагрузке подключают варистор.

Рис. Защита от перенапряжения для индуктивных нагрузок, таких как двигатели

Пример приложения: Защита от перенапряжения для двигателя с электромагнитным тормозом и защита контакта его выключателя

Двигатели переменного тока

, которые используются в промышленных устройствах, включают двигатель с тормозом.Электромагнитный тормоз с использованием электромагнита, якоря (подвижной стальной пластины) и пружины может остановить вращение двигателя сразу после выключения переключателя. Однако, поскольку электромагнит представляет собой индуктивную нагрузку, использующую катушку, в момент отключения тока катушка создает противодействующую электродвижущую силу, и возникает большое импульсное напряжение, которое повреждает контакт переключателя. Для поглощения перенапряжения и защиты контакта переключателя подключается варистор.

Рис.4 Защита касания выключателя двигателя с электромагнитным тормозом

Пример приложения: защита от перенапряжения для твердотельного реле (SSR) и защита его выходной клеммы

SSR (твердотельное реле), использующее полупроводниковый элемент (например, тиристор), используется во многих промышленных устройствах с большим током. Это реле, электрически изолированное оптопарой, и, как преимущество, оно может безопасно управлять включением и выключением устройства с помощью сигналов включения и выключения очень небольшого электрического тока источника постоянного тока.Однако из-за того, что включается и выключается большой ток, выходной терминал легко повреждается из-за перенапряжения. Чтобы подавить это, на выходной стороне параллельно подключают варистор (некоторые твердотельные реле имеют встроенные варисторы).

Рис. 5 Защита выходной клеммы твердотельного реле (SSR)

Пример применения: защита от перенапряжения от сброса нагрузки и спада поля

Когда ток, протекающий через индуктивную нагрузку, использующую катушку, такую ​​как двигатель и генератор переменного тока (электрогенератор), отключается, генерируется большое импульсное напряжение из-за создания противодействующей электродвижущей силы.

Сброс нагрузки - это проблема перенапряжения, которая возникает, когда линия аккумуляторной батареи отключена по такой причине, как отключение клеммы аккумуляторной батареи во время подачи питания от генератора переменного тока на аккумулятор. Затухание поля - это проблема с отрицательным импульсным напряжением, которое возникает, когда полярность батареи изменяется по ошибке.
Поскольку оба они могут достичь ЭБУ и вызвать неисправность, ЭБУ должны пройти тест сброса нагрузки и тест полевого затухания. Дисковый варистор используется для защиты от перенапряжения.

Рис.6 Защита от сброса нагрузки и перенапряжения варистором

Когда питание от генератора переменного тока подается на аккумулятор, отключение аккумуляторной линии приводит к сильному скачку напряжения. Варистор обходит импульсное напряжение для защиты ЭБУ и других устройств.
Испытание на невосприимчивость и испытание на выбросы для ЭБУ (ISO10605)

Оценочные тесты ЭМС для ЭБУ включают тест на невосприимчивость для подтверждения того, что ЭБУ не неисправен, и тест на выбросы для подтверждения того, что ЭБУ спроектирован так, чтобы не генерировать шум, превышающий предел.

Тест на невосприимчивость Стандартный Описание
Тест ESD ISO10605 Оценивает допуск, применяя ESD
Проверка устойчивости к радиочастотам ISO11452-2, -3, -4 Оценивает переносимость с помощью сильной радиоволны
Испытание на самосвал ISO7637-2 Оценивает допуск путем подачи положительного импульсного напряжения.
Тест на распад поля Оценивает допуск путем подачи отрицательного импульсного напряжения.
Испытание на выбросы Стандартный Описание
Испытание на излучение CISPR25 Оценивает радиационный шум от ЭБУ.
Проведенный тест на выбросы Оценивает шум проводимости от ЭБУ.

Пример приложения: Защита от перенапряжения для распределительных коробок и стабилизаторов мощности солнечных систем выработки энергии

Электроэнергия постоянного тока, генерируемая солнечной панелью, отправляется в стабилизатор питания через соединительную коробку, повышается в преобразователе постоянного тока в постоянный, преобразуется в электроэнергию переменного тока с помощью инвертора, а затем отправляется в коммерческую энергосистему.Чтобы защитить его цепь от индуктивного удара молнии и т.п., схемы защиты по напряжению с использованием варисторов вставляются во входную и выходную части соединительной коробки и стабилизатора мощности. Сочетание с ограничителем перенапряжения увеличивает его надежность.

Рис.7 Защита от перенапряжения для распределительных коробок и стабилизаторов мощности солнечных энергосистем

Пример применения: Защита от перенапряжения для важных устройств с помощью грозового трансформатора

Устройство, называемое трансформатором молнии, используется для защиты важных устройств, таких как серверы в центрах обработки данных и телефонные коммутаторы, от грозового перенапряжения.Это комбинация SPD (устройства защиты от перенапряжения или молниезащиты) и специального трансформатора, первичная обмотка и вторичная обмотка которого защищены электростатическим экраном, а скачок напряжения, который не может быть устранен с помощью SPD, проходит через заземленные материалы электростатического экрана и разряжается на земля. Он отлично справляется с синфазным индуктивным разрядом молнии.

Рис.8 Пример защиты от грозовых перенапряжений с грозовым трансформатором

Пример применения: Защита от скачков большой энергии в промышленных устройствах

Блочные варисторы и ленточные варисторы - это высокоэнергетические изделия, используемые для источников питания промышленных устройств и устройств связи, силовых распределительных устройств на электростанциях и подстанциях, железнодорожных сигнальных систем и др., И их преимуществом является чрезвычайно высокая стойкость к импульсным токам.Блочный варистор содержится в корпусе и имеет винтовые клеммы, а ременной варистор имеет плоские (плоские) клеммы с отверстиями, которые фиксируются винтами (или припаяны). Также используется разрядник для защиты линии переменного тока.

Рис. 9 Пример защиты от скачков большой энергии в промышленном устройстве

Связанные страницы

  • ■ Устройства защиты от напряжения Карта продуктов

    Широкий модельный ряд устройств защиты от напряжения

    TDK включает варисторы (оксид цинка) и разрядники (разрядные трубки).Их можно использовать в различных приложениях от малых до больших токов.

■ Порталы по дисковым варисторам

.

Защита от перенапряжения | HowStuffWorks

Стандартный сетевой фильтр пропускает электрический ток от розетки к ряду электрических и электронных устройств, подключенных к удлинителю. Если напряжение в розетке скачкообразно или резко возрастает - - превышает допустимый уровень - устройство защиты от перенапряжения направляет лишнее электричество на заземляющий провод розетки.

В наиболее распространенных типах устройств защиты от перенапряжения дополнительное напряжение отводится металлооксидным варистором или MOV .Как вы можете видеть на схеме ниже, MOV образует соединение между линией горячего питания и линией заземления.

MOV состоит из трех частей: кусок материала из оксида металла в середине, соединенный с линией питания и заземления с помощью двух полупроводников .

Эти полупроводники имеют переменное сопротивление , которое зависит от напряжения. Когда напряжение ниже определенного уровня, электроны в полупроводниках текут таким образом, что создают очень высокое сопротивление.Когда напряжение превышает этот уровень, электроны ведут себя по-другому, создавая гораздо меньшее сопротивление. Когда напряжение правильное, MOV ничего не делает. Когда напряжение слишком высокое, MOV может проводить большой ток, чтобы устранить дополнительное напряжение.

Как только дополнительный ток отводится в MOV и на землю, напряжение в горячей линии возвращается к нормальному уровню, поэтому сопротивление MOV снова возрастает. Таким образом, MOV только отводит импульсный ток, позволяя стандартному току продолжать питать все машины, подключенные к сетевому фильтру.Образно говоря, MOV действует как чувствительный к давлению клапан, который открывается только при слишком большом давлении.

.

Как работают сетевые фильтры | HowStuffWorks

Когда вы собираете компьютерную систему, вы, вероятно, купите одну часть стандартного оборудования - это сетевой фильтр . Большинство разработок выполняют одну очевидную функцию - они позволяют подключать несколько компонентов к одной розетке. Со всеми различными компонентами, из которых состоит компьютерная система, это определенно полезное устройство.

Но другая функция удлинителя с защитой от перенапряжения - защита электроники в вашем компьютере от скачков напряжения - гораздо важнее.В этой статье мы рассмотрим устройства защиты от перенапряжения, также называемые ограничителями перенапряжения, чтобы узнать, что они делают, когда они вам нужны и насколько хорошо они работают. Мы также узнаем, какие уровни защиты доступны, и выясним, почему у вас может не быть всей необходимой защиты, даже если вы используете качественный сетевой фильтр.

Основная задача системы защиты от перенапряжения - защита электронных устройств от «скачков напряжения». Итак, если вам интересно, что делает сетевой фильтр, первый вопрос: «Что такое скачки напряжения?» А потом: «Зачем нужно защищать электронику от них?»

Скачок напряжения или переходное напряжение - это повышение напряжения, значительно превышающее заданный уровень в потоке электричества.В обычной бытовой и офисной проводке в США стандартное напряжение 120 вольт . Если напряжение поднимается выше 120 вольт, существует проблема, и сетевой фильтр помогает предотвратить повреждение компьютера этой проблемой.

Чтобы разобраться в проблеме, полезно кое-что узнать о напряжении. Напряжение является мерой разницы электрической потенциальной энергии . Электрический ток проходит от точки к точке, потому что на одном конце провода имеется большая электрическая потенциальная энергия, чем на другом.Это тот же принцип, при котором вода под давлением вытекает из шланга - более высокое давление на одном конце шланга подталкивает воду к области с более низким давлением. Вы можете представить себе напряжение как меру электрического давления .

Как мы увидим позже, различные факторы могут вызвать кратковременное повышение напряжения.

  • Когда увеличение длится три наносекунды (миллиардные доли секунды) или более, это называется всплеском .
  • Когда он длится всего одну или две наносекунды, он называется пиком .

Если выброс или выброс достаточно высок, они могут нанести серьезный ущерб машине. Эффект очень похож на приложение слишком большого давления воды к шлангу. Если давление воды слишком велико, шланг лопнет. Примерно то же самое происходит, когда через провод проходит слишком большое электрическое давление - провод «лопается». На самом деле он нагревается, как нить накаливания в лампочке, и горит, но идея та же.Даже если повышенное напряжение не сразу сломает вашу машину, оно может вызвать дополнительную нагрузку на компоненты, изнашивая их со временем. В следующем разделе мы рассмотрим, что делают сетевые фильтры, чтобы этого не произошло.

.

Когда использовать сетевой фильтр

В последнем разделе мы увидели, что скачки напряжения - обычное явление, неизбежное при нашей нынешней системе электроснабжения домов и офисов. Возникает интересный вопрос: если скачки напряжения являются неотъемлемой частью нашей электрической системы, почему 50 лет назад нам не понадобились устройства защиты от перенапряжения в наших домах?

Ответ заключается в том, что многие компоненты сложных современных электронных устройств (таких как компьютеры, микроволновые печи, DVD-плееры) намного меньше и более хрупкие, чем компоненты в старых машинах, и поэтому более чувствительны к увеличению тока.Микропроцессоры, которые являются неотъемлемой частью всех компьютеров, а также многих бытовых приборов, особенно чувствительны к скачкам напряжения. Они работают правильно только тогда, когда получают стабильный ток при правильном напряжении.

Итак, стоит ли вам приобретать сетевой фильтр, зависит от того, какое устройство вы подключаете к источнику питания.

  • Нет причин подключать лампочку к сетевому фильтру, потому что худшее, что может случиться из-за скачка напряжения, - это то, что ваша лампочка перегорит.
  • Вам обязательно нужно использовать сетевой фильтр с вашим компьютером. Он заполнен компонентами, чувствительными к напряжению, которые могут очень легко повредить скачок напряжения. По крайней мере, это повреждение сократит срок службы вашего компьютера и может очень легко стереть все ваши сохраненные данные или разрушить вашу систему. Компьютеры - очень дорогое оборудование, и данные, которые они хранят, часто незаменимы, поэтому инвестировать в качественный сетевой фильтр - это только хороший экономический смысл.
  • Рекомендуется использовать сетевые фильтры для другого высокотехнологичного электронного оборудования, например для компонентов развлекательных центров.Сетевой фильтр обычно продлевает срок службы этих устройств, и всегда есть шанс, что большой скачок напряжения вызовет серьезные повреждения.

Одна проблема с устройствами защиты от перенапряжения заключается в том, что MOV могут сгореть за один хороший импульс. Вот почему хорошо получить протектор со световым индикатором , который сообщает вам, правильно ли он работает.

Даже если вы подключите сетевые фильтры ко всем своим розеткам, ваше оборудование может подвергнуться разрушительным импульсным перенапряжениям от других источников.Телефонные и кабельные линии также могут проводить высокое напряжение - для полной защиты следует также обезопасить себя от скачков напряжения от телефонных или кабельных линий. Любые линии, передающие сигналы в ваш дом, также могут подвергнуться скачку напряжения из-за молнии или ряда других факторов. Если ваш компьютер подключен к телефонным линиям через модем, вы должны получить сетевой фильтр с входным разъемом для телефонной линии . Если у вас есть коаксиальный кабель, подключенный к дорогостоящему оборудованию, подумайте о кабельном сетевом фильтре .Скачки на этих линиях могут нанести такой же ущерб, как и скачки на линиях электропередач.

.

Смотрите также