Каркасы из арматуры для свай


Арматурные каркасы для свай — что нужно знать о них?

Арматурный каркас для свай — это конструкция из металлической арматуры, изготовленная из стержней одного направления, но разных сфер армирования железобетонного элемента.

Арматура соединяется стержнями — поперечными или косыми — и хомутами, превращаясь в единую металлическую конструкцию.

Всё это нужно, чтобы повысить прочность элемента и устойчивость всего строения.

Навигация по статье:

Разновидности каркасов из арматуры

В настоящий момент существует 2 вида арматурных каркасов.

Объёмные каркасы

По назначению объёмные каркасы бывают разные:

  • круглые и квадратные — для свай,
  • клеточного вида — для заливки значительного объёма бетона, например, при строительстве массивных промышленных зданий.

Объёмный каркас — это конструкция, сделанная из нескольких решёток, между которыми — соединения в виде стержней из металла, которые перпендикулярно прикрепляются к плоскости решётки.

Чтобы изготовить подобный каркас, понадобятся стержни диаметром по 8 и 12 миллиметров, что позволит сформировать сваи с необходимым под данный вид работы диаметром.

Способы производства зависят от формы каркаса: большой каркас изготовляется в индивидуальном порядке, а вот каркас для свай — с применением автоматизированных сварочных линий.

Плоские каркасы

У плоских арматурных каркасов — 2–3 продольных слоя арматурной сетки, приваренных друг к другу прутами. Продольные стержни закрепляются прутьями:

  • наклонными,
  • поперечными,
  • непрерывными,
  • стальными.

Основная цель, для чего применяют каркас — укрепить конструкцию без особого увеличения её массы, для закладки фундамента и армирования железобетона.

Как вязать арматурные каркасы?

Основные материалы при изготовлении каркасов:

  • гладкий и рифлёный арматурный стержень,
  • горячекатаная катанка,
  • проволока ВР-1,
  • гладкая и рифлёная бухтовая арматура 6–12 миллиметров.

Металлические пруты, бывает, покрывают антикоррозийной защитой, но не всегда. Обычно для этого используют стальные стержни без покрытия и добавок или же — металлические прутья. Отдельные пруты соединяются проволокой или путём сварки. Большие каркасы собирают из готовых деталей.

Изготовление арматурных каркасов может производиться как на специализированном предприятии, так и прямо на стройплощадке. Что позволяет производить не только стандартные формы каркаса, но и индивидуальные, под конкретное строение.

В настоящий момент существует 2 технологии производства каркасов.

Автоматизированная сборка на заводе

Параметры:

  • сечение — цилиндрическое, призматическое;
  • длина (максимум) — 14 метров;
  • масса (максимум) — 4,5 тонны;
  • соединение — автосварка;
  • диаметр — 20–150 сантиметров.

Ручная сборка

Параметры:

  • сечение — не ограничено;
  • длина (максимум) — 16 метров;
  • масса (максимум) — 10 тонн;
  • соединение — полуавтоматом.

При изготовлении каркасов круглой формы применяется сварка несущих стержней с арматурой, навитой по спирали. Благодаря этим технологиям достигаются идеальные геометрические формы каркаса, а также — высокая производительность и качественная сварка.

Сегодня на стройплощадках применение забивных свай ограничено по, поэтому фундаменты сейчас закладывают по новой технологии буронабивных свай. Такие сваи конструируются прямо в грунте. Арматурный каркас ставят в скважину, и заливают бетоном до застывания. Особый плюс такой технологии — мало шума при производстве, поэтому можно строить там, где забивные сваи использовать нельзя было бы. Для армирования буронабивных свай используется круглый арматурный каркас.

Применение арматурных каркасов

Перво‑наперво, арматурные каркасы для свай используются для создания крепких, долговечных и предельно надёжных строений из железобетона, или для дополнительного укрепления построек, уже находящихся в эксплуатации. Обширную популярность арматурные каркасы приобрели при строительстве различных инженерных объектов, например, промышленных комплексов.

Арматурный каркас для основания обязательно используется при заливке фундамента железобетонных конструкций.

Преимущества арматурных каркасов

Преимущества применения арматурных каркасов:

  • ускоряется монтаж конструкций из железобетона,
  • сокращается общий цикл работ,
  • можно работать на любой поверхности,
  • можно использовать арматурные отходы,
  • растёт рентабельность производства.

Заказать расчет стоимости монолитного дома в СПб и ЛО

Наш специалист свяжется с вами, внимательно выслушает и предложит проект дома, который подходит вам, с расчетом стоимости. Оставьте телефон для связи:

Армирование ростверка свайного фундамента 

Содержание   

Свайный фундамент — универсальное основание для строительства кирпичных (об армировании кирпичной кладки — читаем отдельно), деревянных, газобетонных (про армирование газобетона — читаем отдельно) и пенобетонных малоэтажных домов в любых грунтовых условиях. Такие основания применяются и для других конструкций (к примеру — заборов, колонн). Прочность и надежность свайного фундамента непосредственно зависит ростверка, о технологии армирования которого мы поговорим в данной статье.

Армирование ростверка

Вы узнаете, зачем необходимо армирование свайно-ростверкового фундамента, какие материалы для этого используются и как выполняется сам процесс. Будут приведены схемы и чертежи, объясняющие все нюансы армирования монолитного ростверка.

Какие функции выполняет ростверк и зачем нужно его армирование?

Ростверк представляет собой ленточную конструкцию (о том, как армируют обычный ленточный фундамент — читаем отдельно), соединяющую отдельно стоящие сваи между собой. За счет обвязки опоры получают дополнительную пространственную жесткость и устойчивость к опрокидывающим нагрузкам. Также ростверк выступает в качестве опорной поверхности, на которой возводятся стены здания.

Читайте также: что такое анкеровка арматуры, и зачем она необходима?

Существует несколько разновидностей обвязки по материалу изготовления — стальная (из швеллера либо двутавра) деревянная (из бруса) и железобетонная. Именно в случае монтажа монолитного свайного ростверка, который используется при обустройстве домов из тяжелых материалов, необходимо выполнить армирование обвязки.

Потребность в укреплении монолитного ростверка арматурой обуславливается тем, что бетон как материал имеет высокую устойчивость к сжимающим нагрузкам, но при этом ему свойственно слабое сопротивление к нагрузкам на изгиб и растяжения, которые могут стать причиной его деформации.

Схема свайно-ростверкового фундамента

Размещенный внутри монолитного ростверка армокаркас воспринимает на себя вышеуказанные нагрузки, предотвращая риск его разрушения, что значительно увеличивает надежность и долговечность конструкции. Армирование необходимо не только при монтаже свайно-ростверкого фундамента, но и в столбчатом основании, которое имеет схожую конфигурацию.

Читайте также: какой сеткой делается армирование стяжки пола?

Отметим, что армированию подлежат фундаменты, в которых используются сваи двух видов — забивные и буронабивные. Забивные сваи представляют собой конструкции заводского изготовления, которые по завершению монтажа с помощью копровой техники обрезаются специальной гидравлической сваерезкой.

После обрезки оголяется арматура на торцевой части сваи, которая впоследствии связывается с каркасом монолитного ростверка. При монтаже буронабивных опор их армокаркас делается так, чтоб над бетонным телом сваи находились выступы арматуры высотой 30-40 см.
к меню ↑

Чем и как армировать?

Армирование ленточного ростверка выполняется посредством пространственного армокаркаса, состоящего из двух продольных поясов арматуры (верхнего и нижнего), соединенных между собой горизонтальными и вертикальными перемычками.

Продольные пояса выполняются из прутьев арматуры класса А3 (горячекатаный профиль рифленого типа), диаметр которой составляет 13-16 мм. Использовать стеклопластиковую арматуру можно, что подтверждают отзывы о успешной эксплуатации таких свайно-ростверковых фундаментов на специализированных форумах.

Соединяющие вертикальные и горизонтальные перемычки могут выполняться в двух вариантах — в виде отдельных прутков приваренной к продольных поясам арматуры (схема демонстрирует конфигурацию). В таком случае необходимо использовать стержни аналогичного типоразмера, что и при обустройстве продольного пояса.

Чертеж соединения поясов отдельными перемычками

Также каркас может соединяться перемычками из выгнутой в хомуты прямоугольной формы арматуры (нижеприведенная схема). При таком подходе используются гладкие стержни класса А2 (диаметр 8-10 мм). Гнутые хомуты трудоемки в монтаже, однако они за счет меньшего количества сварных швов они более надежны и долговечны. Стеклопластиковая арматура, не подлежащая гибке, для создания хомутов не применяется.

Чертеж соединения поясов хомутами

Согласно положениям СНиП №2.03.01 «Пособие по проектированию и обустройству свайно-ростверковых фундаментов», при монтаже армокаркаса необходимо соблюдать следующий шаг между составляющими элементами:



data-ad-client="ca-pub-8514915293567855"
data-ad-slot="1955705077">

  • количество стержней в продольных поясах — минимум 4, расстояние между ними — до 10 см;
  • шаг между поперечными перемычками продольного пояса — 20-30 см;
  • шаг между вертикальными соединяющими перемычками — до 40 см;
  • защитный слой бетона — минимум 5 см.

Защитный слой представляет собой расстояние между крайними контурами армокаркаса и стенками бетонного тела монолитного ростверка. Если защитный слой не будет иметь требуемую толщину возникнет две проблемы — каркас не сможет правильно перераспределять действующие на ростверк нагрузки и арматура будет чрезмерно подвержена коррозии под воздействием влаги, проникающей в микропоры бетона.

Пластиковая подставка под арматуру

Чтобы сделать защитный слой по нижней грани ростверка используются специальные пластиковые подставки-грибки, которые поднимают арматуру над опалубкой. Применение в данных целях кусков кирпича не допускается.
к меню ↑

Как рассчитать количество арматуры?

В качестве примера приводим расчет количества арматуры для монолитного ростверка периметром 8*6 м. Используем условные габариты обвязки 40*40 см. Армокаркас под такую обвязку будет состоять из двух продольных поясов по 3 стержня А3 диаметр 14 мм в каждом (шаг между прутьями 10 см, по 5 см с каждой стороны съедает защитный слой бетона). Пояса соединяются перемычками из арматуры А1 диаметр 11 мм, расположенных с шагом в 20 см.

Расчет выполняется по следующему алгоритму:

  1. Определяем общую длину прутьев в верхнем продольном поясе. Для этого: а) определяем периметр ростверка: 8+8+6+6 = 30 м; б) делаем расчет длины 3-ех стержней: 3*30 = 90 м; в) рассчитываем длину арматуры А3 на оба пояса: 90*2 = 180 м.
  2. Для соединения прутьев продольного пояса нам потребуются перемычки длиной 30 см, которые будут расположены с шагом 20 см. Выполняем расчет их количество на оба контура ростверка: 2*(30/0.2) = 300 шт, после чего рассчитываем общую длину поперечных перемычек: 300*0,3 = 100 м.
  3. Осталось произвести расчет длины вертикальных перемычек, соединяющих верхний и нижний контуры каркаса между собой. Но поскольку в примере рассчитывается прямоугольный ростверк, их количество и длина будет идентичной поперечным перемычкам. Если же используется ростверк прямоугольной конфигурации, расчет выполняется по указанной в пункте №2 формуле.

В итоге расчет нам показал, что армирование ростверка требует 180 м арматуры класса А3 и 200 м (100+100) стержней А2 диаметром 11 мм. Также может потребоваться расчет вязальной проволоки, если вы не планируете использовать стыковку сваркой. Выполняется он с учетом того, что на одно соединение уходит около 40 см материала: определяем количество соединений: 4*(30/0,2) = 600 шт; и высчитываем расход материала — 600*0.4 = 240 м.
к меню ↑

Особенности армирования ростверка (видео)

к меню ↑

Технология армирования монолитного ростверка

Амирование ростверка начинается после выполнения всех предыдущих этапов обустройства свайного фундамента — монтажа свай, их обрезки и обустройства опалубки. Вы должны иметь готовую опалубку, внутри которой на высоту, равную сечению обвязки, выступают армокаркасы свай.

Опалубка и сваи перед началом армирования

При сборке каркаса арматуру можно вязать между собой с помощью проволоки либо соединять прутья методом сварки. Существенной разницы в способе стыковки нет — нередко утверждают, что сваренный каркас из-за отсутствия эластичности хуже противостоит деформациям, чем соединенная вязкой конструкция, однако в промышленном многоэтажном строительстве каркасы свайно-ростверковых фундаментов всегда свариваются, так что эти опасения беспочвенны. К тому же, сварка более практичный и быстрый в реализации способ.

Читайте также: как армируют лестницы, и нужно ли это делать?

Армирование ростверка — пошаговая инструкция:

  1. К выступающей из сваи арматуре на высоте от 5 см от дна опалубки привариваются горизонтальные прутки.
  2. На прутьях с заданным шагом размещается и приваривается арматура нижнего продольного пояса.

    Первый пояс армокаркаса и хомуты

  3. В участках между сваями устанавливаются предварительно выгнутые прямоугольные хомуты, выступающие в качестве соединяющих перемычек.
  4. На лицевых гранях хомутов-перемычек фиксируются элементы верхнего продольного пояса.

    Усиление углов на верхнем поясе каркаса

Сборка армокакаркаса на прямых участках ростверка достаточно проста в исполнении. Трудности наступают при армировании углов, которое необходимо дополнительно усиливать, поскольку эта часть каркаса испытывает максимальные нагрузки.

Схема правильного армирования углов и примыканий ростверка

Углы и места примыкания внутренних стен обвязки к наружным нельзя армировать перехлестом арматуры. На данных участках необходимо укладывать цельные стержни, выгнутые в Г либо П-образной конфигурации. Схема правильного армирования углов свайного ростверка приведена на изображении.

Статьи по теме:

   

Портал об арматуре » Армирование » Технология армирования свайного ростверка

нормативы и типы устройства конструкции, технология проведения работ

Армирование входит в перечень технологических процессов при производстве буронабивных и железобетонных свай.

Процедура необходима для придания жесткости силовой конструкции, а также предотвращения разрушения опорных элементов при воздействии деформирующих сил со стороны грунта.

Подробнее о технологии, разновидностях армирования свай расскажем в статье.

Нормативы и типы устройства силовой конструкции

Технология армирования предполагает использование трех основных методик:

  1. Монтаж армирующего каркаса продольного типа.
  2. Продольно-поперечно армирование.
  3. Армирование по методу предварительного напряжения.

Принципы устройства силовой конструкции описаны в таких нормативных документах:

  • сварные арматурные изделия для ж/б конструкций – ГОСТ 10922-90, ГОСТ 19804.4-78 и ГОСТ 19804.2-79;
  • вычисления необходимого расстояния между элементами арматурного каркаса – СП 63.13330.2018;
  • требования к качеству металлопроката для армирования свай – в вышеуказанном СП 63.13330, ГОСТ 5781-82, ГОСТ 10884;
  • испытание ж/б конструкций на образование трещин – ГОСТ 19804.0.

Продольного типа

По технологии арматура располагают параллельно друг к другу без горизонтальных перемычек. Для свай с сечением 200х200 и 300х300 мм используют 4 прута, а для опорных элементов 350х350 и 400х400 мм – 8 стержней.

Назначение свай с продольным армированием – закладка фундамента в почвах средней плотности (глина, супесь, суглинок) под наземные сооружения.

Такие силовые конструкции обходятся дешевле, но они характеризуются слабым сопротивлением относительно растягивающих и сгибающих нагрузок. Эта особенность ограничивает сферу применения фундамента, исключая строительство гидротехнических сооружений.

Продольно-поперечного вида

Сварная конструкция такого типа состоит из продольных прутьев с приваренной арматурной сеткой или горизонтальными перемычками. По краям каркаса шаг между поперечными элементами составляет 100 мм, в средней части – 200 или 300 мм, если глубина опорной подошвы больше 13 м.

Опоры с армокаркасом продольно-поперечного типа выгодно отличаются устойчивостью к различным нагрузкам в процессе службы, а также свободно переносят столкновения с крупнообломочными породами.

Это расширяет сферу применения свайных фундаментов для строительства сооружений жилищного и промышленного назначения на:

  • высокоплотных глинистых,
  • песчаных,
  • вечномерзлых грунтах,
  • а также на участках с каменистыми включениями.

Помимо наземных сооружений, сваи с продольно-поперечным армированием подходят для возведения:

  • дамб,
  • мостов,
  • причалов.

Метод предварительного напряжения

При изготовлении свай в металлическую форму помещают аромокаркас и растягивают его с помощью гидравлических домкратов. Одновременно на прутья оказывают воздействие энергией СВЧ-поля для уменьшения плотности стали. После этого опалубку заполняют раствором.

Когда бетон схватывается, натяжение ослабляют и прутья сжимаются до первоначального состояния. При этом сжимающие силы воздействуют на бетон, в результате чего он приобретает максимальную плотность.

Такой фундамент используют для строительства наземных сооружений, а также возведения построек на воде в геологических условиях, где силовая конструкция будет подвергаться изгибающим и растягивающим нагрузкам.

Какие столбы армируются?

Армированию подлежат все железобетонные свайные фундаменты, которые будут использованы для строительства жилых сооружений, а также построек I класса ответственности.

К таким силовым конструкциям относятся:

  1. Забивные опоры.
  2. Буронабивные и буроинъекционные столбы.
  3. Винтовые бетонные стержни.

С целью экономии собственники могут использовать бетонные сваи без арматуры только в том случае, если их несущая способность и эксплуатационный ресурс удовлетворяет проектным условиям. Как правило, речь идет о строительстве легковесных построек на высокоплотных грунтах, которые могут оказывать незначительной деформирующее воздействие на фундамент.

Например, если буронабивные сваи диаметром 300 мм будут испытывать только вертикальную нагрузку от вдавливания в несущий пласт с высоким сопротивлением, то прочность фундамента будет достаточной без армирования. Металлические винтовые и полые забивные сваи армированию не подлежат.

Особенности для забивных опор

Армирование выполняется на одной производственной линии вместе с остальными этапами изготовления ж/б опор. При этом предприятия могут закупать готовые каркасы у сторонних компании или заниматься их производством самостоятельно. Ближе к концу каркаса пруты загибают к центру, формируя острие сваи.

Для строительства в геологических условиях с высокоплотным грунтом или большим содержанием крупнообломочных пород, острый конец конструкции защищают стальной обоймой. Верхнюю часть каркаса дополнительно оснащают арматурной сеткой с шагом в 50 мм, чтобы укрепить конструкцию для оптимального восприятия ударов молота.

Для изготовления каркаса используют горячекатаные рифленые пруты из стали класса АI и АII (Ø от 12 мм).

Для армирования свай по методу предварительного напряжения применяют металлопрокат из стали марок:

  • 25Г2С,
  • 35ГС,
  • 30ХГ2С,
  • 20ХГ2Ц (Ø12–20мм).

Для буронабивных и буроинъекционных оснований

Необходимость армирования набивного и буроинъекционного основания определяется на этапе проектирования после расчета нагрузок, несущей способности, а также анализа конструкции на возможность деформации.

Армокаркас для фундамента изготавливают из продольной рифленой арматуры класса АI и АII (Ø 10–16 мм). Для горизонтальных перемычек используют гладкий металлопрокат (Ø 6–8 мм).

Соединять конструкции можно двумя способами:

  1. Фиксировать прутья вязальной проволокой.
  2. Использовать сварочный аппарат.

Места сварочных швов защищают и покрывают гидроизоляционным материалом.

Подготовка к процессу

Когда сборка армокаркаса будет проводиться своими руками, мастеру необходимо предварительно изучить нормативные требования, подготовить оборудование и запастись металлопрокатом в нужном количестве.

Необходимые инструменты

Чтобы сделать армокаркас своими руками, конструктору понадобятся такое техническое оснащение:

  • болгарка для резки металлопроката;
  • сварочный аппарат и/или вязальный пистолет/плоскогубцы;
  • рулетка, карандаш, кисть для защиты швов антикоррозийной грунтовкой.

Определение количества материала

Согласно требованиям из СНиП 52-01-2003 (актуальная редакция СП 63.13330.2018), содержание продольной арматуры в силовой конструкции не должно быть меньше 0,1%. Поэтому сначала рассчитывают опорную площадь фундамента и в соответствии с этим значением подбирают количество прутьев.

Шаг между поперечными перемычками – 1 м. Размер хомутов определяют, исходя из конфигурации каркаса (кольцо, квадрат). Длину арматуры рассчитывают, складывая глубину скважины и высоту ростверка.

Как правило, на один узел идет 30–40 см вязальной проволоки. Удобно вести расчет, имея перед собой чертеж силовой конструкции с нанесенными размерами.

Технология проведения работ

Алгоритм работы следующий:

  1. Подготавливают арматуру – нарезают прутья на отрезки нужной длины с помощью болгарки.
  2. Изгибают гладкие прутья, придавая им нужную форму.
  3. Размещают две рифленых арматуры параллельно друг к другу на рабочей поверхности.
  4. Надевают на продольные прутья заготовленные квадраты и фиксируют с помощью сварки или обвязывают проволокой.
  5. Переворачивают конструкцию и фиксируют две оставшиеся продольные арматуры.
  6. Покрывают металлический каркас гидрофобным составом.

Готовый армокаркас устанавливают внутри скважины и заливают бетонным раствором. Над поверхностью бетона должны выступать прутки для связки с ростверком.

Изготовление арматурного каркаса для буронабивных свай — в видео:

Вся самая важная и полезная информация о свайно-винтовом фундаменте представлена в данном разделе.

Заключение

Технология армирования применяется, чтобы придать свайному фундаменту необходимую прочность и стойкость по отношению к деформирующим нагрузкам, которые возникают в процессе монтажа и эксплуатации. Готовые железобетонные конструкции изначально оснащены армирующим поясом, который закладывается в форму при производстве.

В случае с буронабивными и буроинъекционными сваями изготовить силовую конструкцию можно своими руками по технологии, описанной в статье. Требования к качеству и количеству арматуры контролируются нормативными документами.

Вконтакте

Facebook

Twitter

Одноклассники

Мой мир

Армирование свай

На данной странице представлена информация о армировании свай. Вы узнаете, какие сваи подлежат армированию и какие виды укрепления железобетонных изделий существуют. Также будет детально рассмотрена технология армирования буронабивных конструкций и расчеты, предшествующие данному процессу. 
Наша фирма предоставляет услуги по реализации свайных изделий с квадратным, прямоугольным и круглым сечением, обладающих продольным и продольно-поперечным армированием. Мы поставляем все распространенные типоразмеры свай длиной от 3-12 метров. СК "Установка свай" ведет приемлемую ценовою политику - стоимость наших свай существенно ниже, чем у конкурентов не только по Москве, но и по всему центральному региону России.

Виды армирования свай

Важно: классификация способов армирования свай приведена в нормативе ГОСТ №10992 "Арматурные каркасы для ЖБ изделий". Согласно данному документы, выделяют два вида армирования - продольным и продольно-поперечным каркасом.

Рассмотрим каждый способ подробнее.

Армирование продольного типа

Железобетонные конструкции, армированные продольным способом, подлежат к использованию в устойчивой среднеплотной почве, к которой относится суглинок, глинистый грунт и супесь. Из-за уменьшения расхода арматуры при производстве такие сваи стоят дешевле, однако в плане сопротивления нагрузкам на изгиб и растяжение они уступают конструкциям с продольно-поперечным армированием, что не позволяет применять их в гидротехническом строительстве и в сейсмически опасных регионах.

Важно: армокаркас при продольном армировании состоит из параллельно расположенных арматурных прутьев в количестве 4 (для свай 20х20 - 30х30 см) или 8 шт. (для свай 35х35 и 40х40 см). Диаметр применяемой арматуры варьируется в пределах от 12 до 15 мм. (используются стержни рифленого типа марки А1 и А2).

Рис. 1.1: Продольное армирование свай

Части ствола сваи, испытывающие в процессе погружения повышенную нагрузку, укрепляются дополнительным армированием:

  • Верхний контур сваи усиливается металлическими сетками, расположенными на расстоянии 5 см. друг от друга (количество 4-5 шт). За счет наличия сеток уменьшается риск возможного повреждения конструкции в процессе забивки молотом;
  • Нижняя часть ствола укрепляется стальной обоймой конической формы, которая приваривается к поверхности подогнутых вовнутрь арматурных прутьев. Обойма усиливает бетонное острие сваи, которое во время погружения может сталкиваться с камнями и горными породами.

Армирование продольно-поперечного типа

Для продольно-поперечного способа армирования железобетонных конструкций применяется пространственный армокарас, состоящий из параллельных прутьев арматуры (диаметр 11-15 мм., класс А1 или А2) и соединяющих их поперечных перемычек (диаметр 8-12 мм). Также в качестве соединяющих элементов может применяться собранная в цилиндр металлическая сетка, такой подход реализуется при армировании свай круглого сечения.


Рис. 1.2: Каркас для продольно-поперечного армирования

Важно: поскольку разные участки ствола в процессе забивки свай и работы в грунте испытывают отличающиеся по силе нагрузки, шаг поперечных перемычек по периметру ствола отличается. В центральной части он варьируется в диапазоне 20-30 см. (для конструкций длиной до 12 м - 30 сантиметров, длиннее 12 м - 20 см), по боковым граням ствола - 10 см.


Рис. 1.3: Продольно-поперечное армирование

Оголовки свай, армированных данным методом, также усиливаются арматурной сеткой и конусообразной стальной обоймой на острие ствола.

Армирование по методу предварительного напряжения

Метод преднапряжения является вспомогательной технологией, реализация которой позволяет достичь увеличения плотности бетона и, как следствие, существенного повышения сопротивления сваи нагрузкам на разрыв и изгиб.

Преднапряжению подлежат сваи как с продольными, так и с продольно-поперечными армокаркасами. Главное условие - используемая арматура должна изготавливаться из высокопрочных сталей 35-ГС и 30-ХГ2С (применяются стержни 13-20 мм в диаметре).


Рис. 1.4: Гидродомкрат для преднапряжения арматуры

Суть метода состоит в следующем: после укладки армокаркаса в заливочную форму он растягивается с помощью гидравлических домкратов (для увеличения эффективности растяжения на арматуру воздействуют электрическим током, за счет которого снижается плотность стали). После фиксации каркаса в растянутом состоянии заливочная форма заполняется бетоном. Напряжение домкратами убирается после схватывания бетона "на отлип" - арматура возвращается до первоначального размера и в месте с ней сжимается и уплотняется бетон, частично отвердевший вокруг прутьев.


Рис. 1.5: Гидродомкрат в процессе работы

Какие сваи армируются

Важно: армированию подлежат все виды железобетонных свай - забивные, буронабивные и буроинъекционные.


Армирование забивных конструкций

Изготовление свай забивного типа осуществляется на производственной линии, где выполняются все стадии их формирования, включая укрепление арматурным каркасом. Создание армокаркаса может выполняться как на заводе, изготавливающем ЖБИ, так и на предприятиях, специализирующихся на металлопрокате, у которых завод закупает арматурную заготовку.


Рис. 1.6: Изготовления арматурного каркаса

Армокаркас при производстве сваи размещается внутри металлоформы - специальной опалубки, разделенной продольными бортами на отсеки, соответствующие размерами форме изготавливаемых свай. После укладки арматурных каркасов отсеки металлоформы заполняются бетоном, и опалубка транспортируется в камеру пропарки, где при повышенной температуре происходит отвердевание бетона. После набора бетоном нормативной прочности сваи, посредством лебедочных механизмов, изымаются из металлоформы и складируются на месте хранения.


Рис. 1.7: Металлоформа для свай

Армирование буронабивных и буроинъекционных конструкций

Данные виды свай изготавливаются в почве непосредственно на территории строительного объекта, там же происходит и их армирование.

Методика армирования набивных и инъекционных конструкций отличается лишь последовательностью реализации технологических операций:

  • При монтаже свай буронабивного типа первоначально в грунте пробуривается скважина, после проходки полости на требуемую глубину в нее с помощью крана устанавливается продольно-поперечный армокаркас. Далее в устье скважины монтируется бетонолитная труба и полость заполняется бетонной смесью;
  • Скважины для буроинъекционных свай разрабатываются специальными буровыми колоннами, во внутренней части которых присутствует канал для нагнетания бетона. Заполнения полости бетоном происходит сразу же по завершению ее проходки, и уже в бетон посредством вибропогружателя загружается каркас из арматуры.

Рис. 1.8: Погружение армокаркаса в скважину под буронабивную сваю

Технология армирования набивных железобетонных конструкций при их самостоятельном изготовлении практически не отличается от вышеприведенной, за исключением того, что все технологические операции выполняются вручную.

Расчёты

Армирование железобетонных свай требует проведения предварительных расчетов, направленных на определение количества используемой для создания каркаса арматуры. В качестве примера рассмотрим расчет арматуры под 20 буронабивных свай диаметром 30 см и высотой 2 м., используемых для обустройства фундамента под дом из пенобетона.


Рис. 1.9: Схема армирования буронабивных свай

Для армирования свай диаметром 30 и больше сантиметров используется пространственный армокаркас и 4-ех продольных прутьев и соединяющих их поперечных перемычек в количестве 3-ех шт., по одной в каждой части ствола сваи (низ-центр-верх).

Важно: длина продольных прутьев должна на 25-30 см. превышать высоту тела сваи, выпуски арматуры впоследствии соединяются с армокаркасом ростверка.

Имея исходные данные можно рассчитать общую длину требуемой продольной арматуры:

  • 4*(2+0.3) = 9,2 м. - на одну сваю;
  • 20*9,2 = 184 м. - на все сваи.
Далее высчитываем длину гладкой арматуры, используемой в качестве продольных перемычек (по 3 шт. на каждую сваю). Для этого потребуется определить длину окружности сваи, делается это по формуле O = p*d, в которой: d - диаметр сваи, p - 3,14 (константа). В нашем случае длина окружности составляет 94.5 см.
  • 3*0,945 = 2,84 м. - на одну сваю;
  • 20*2,84 = 56,7 м. - на все сваи.
В итоге мы определили, что для армирования 20 буронабивных свай нам потребуется 184 м. продольной арматуры (используются рифленые прутья диаметром 12-50 мм) и 57 м. арматуры для поперечных перемычек (гладкие прутья диаметром 8-10 мм).

Важно: учитывая отходы при резке арматуры, имеет смысл брать прутья с запасом в 10-15 метров, поскольку сваривание недостающих по размеру обрезков с краев арматуры в один стержень негативно сказывается на общей прочности армокаркаса.

Как выполняется армирование ЖБ свай

Для армирования железобетонных конструкций, при их самостоятельном изготовлении, нужна болгарка и сварочная установка. Сварка, при надобности, заменяется вязальной проволокой, которой также можно соединять отдельные стержни в армокаркас.


Рис. 2.0: Вязка армокаркаса проволокой

Технология выполнения работ следующая:

  • Арматурные прутья болгаркой нарезаются на отрезки требуемой длины. Имеет смысл заготавливать материалы предварительно, чтобы потом одним заходом сделать каркасы для всех свай;
  • Подготавливаются прутья для поперечных перемычек - их можно выгнуть, придав стержням требуемую округлую форму, либо разрезать на 4 отдельных куска, которые впоследствии будут привариваться по боковым контурам продольного каркаса;
  • Имея в наличии исходный материал начинается сборка армокракасов - два продольных прутка укладываются параллельно друг другу и соединяют в трех местах (по центру, снизу и сверху) поперечными перемычками. Далее аналогичным образом свариваются оставшиеся два прутка, после чего заготовки стыкуются между собой;
  • По завершению сборки каркасов арматура покрывается антикоррозийным грунтом.

Рис. 2.1: Сварной арматурный каркас

Монтаж армокаркаса в скважину выполняется по следующей технологии:

  • После проходки скважины на требуемую глубину ее дно устилается геотекстилем либо рубероидом;
  • Поверх геотекстиля делается 10 сантиметровая подсыпка из мелкофракционного щебня;
  • Из рубероида скручивается цилиндр (фиксируется скотчем) высотой равный размеру продольных прутьев, и опускается в скважину;
  • Подготовленный армокракас устанавливается внутри опалубки;
  • Скважина заполняется бетонной смесью (класс бетона - М200 либо М300). После заливки бетон штыкуется арматурным прутком с целью удаления из смеси полостей воздуха.

Рис. 2.2: Скважина под набивную сваю перед заливкой бетоном
К дальнейшему строительству армированная свая будет готова спустя 25-30 дней после заливки - простой нужен для набора бетоном прочности.

Полезные материалы

Арматурный каркас для фундамента

Арматурный каркас - это остов фундамента, собираемый из стальных прутьев, воспринимающих растягивающие нагрузки и препятствующий деформациям.

 

 

 

 

Арматурные каркасы для свай — основа прочности

Арматурным каркасом для свай называют конструкцию из металлической арматуры, чаще всего она изготавливается из стрежней одного направления, но разных сфер армирования ж/б элемента. Арматуру соединяют между собой поперечными или косыми стержнями, хомутами, создавая таким образом цельную металлоконструкцию. Самый популярный размер свай ─ от 0,6 до 6 м ─ определяют на основании расчета условий для обеспечения прочности конструкции.

 Арматурный каркас применяют для армирования ж/б конструкций, в частности, на этапе заливки. Это дает возможность намного увеличить прочность изделия и устойчивость конструкции к механическим нагрузкам разной степени интенсивности и продолжительности . 

Типы арматурных каркасов

Слева на фото расположены плоские, справа — объемные каркасы для свай.

В настоящее время в строительстве используют два вида армированных каркасов: объемные и плоские.

Объемные каркасы бывают разного назначения: квадратные и круглые формы для свай, объемные металлические конструкции клеточного вида, которые применяют во время строительства промышленных зданий при заливке большого количества бетона.

На фото — каркасы прямоугольного сечения

Этот тип каркасов представляет собой объемную конструкцию, выполненную из нескольких решеток с соединениями между ними в виде металлических стержней, прикрепляемых перпендикулярно к плоскости решетки.

Для изготовления этого вида каркасов необходимы стержни с диаметрами 8 и 12 мм, это дает возможность формировать сваи с диаметром, соответствующим конкретному виду работ.

В зависимости от формы различают и способы производства: большие каркасы изготавливают в индивидуальном порядке, а каркасы для свай – применяя автоматизированные сварочные линии.

Плоские арматурные каркасы имеют вид двух или трех продольных слоев арматурной сетки, приваренных друг к другу с помощью прутов. Продольные стержни фиксируют наклонными, поперечными («лесенка»), непрерывными («змейка») или стальными прутьями.

Основная сфера применения каркасов ─ укрепление линейных конструкций без значительного изменения их массы, закладка фундамента (в том числе и ленточного) и армирование железобетона.

Изготовление арматурных каркасов

В качестве основного материала при изготовлении каркасов для свай применяют:

  • катанку горячекатаную,
  • рифленый и гладкий арматурный стержень,
  • проволоку ВР-1,
  • рифленую и гладкую бухтовую арматуру диаметром 6-12 мм.

Металлические пруты иногда покрывают специальной антикоррозийной защитой, но чаще всего для такой цели используют металлические прутья или стержни из низкоуглеродистой стали без покрытия и легирующих добавок. Отдельные металлические пруты соединяют сваркой или связывают проволокой. Объемные каркасы собираются из готовых плоских составляющих.

Производством армированных каркасов могут заниматься как специализированные предприятия, так и прямо при строительстве объектов. Это позволяет создавать не только стандартную форму каркасов, но и специальную, точно рассчитанную для будущего изделия. На сегодняшний день пространственные каркасы изготавливают по двум основным технологиям:

1. Автоматизированная сборка в заводских условиях включает такие параметры:

  • тип сечения: призматический или цилиндрический;
  • длина ─ 14 м — максимум;
  • масса – до 4,5 т;
  • Диаметр сечения – 20 -150 см;
  • рабочая арматура: 1,2-4 см, спиральной: )0,6-1,6 см;
  • вид соединения – автосварка.

2. Ручная сборка каркасов предполагает такие параметры:

  • тип сечения – неограничен;
  • масса – до 10 т;
  • длина – до 16 м;
  • размеры рабочей и спиральной арматуры;=
  • вид соединения – путем фиксации проволокой или сваркой — полуавтоматом .

В производстве каркасов круглой формы применяют сварку несущих стрежней с навитой по спирали арматурой. Применение этих технологий позволяет достигать идеальных геометрически форм арматурного каркаса, качественной сварки и высокой производительности.

С учетом того, что сегодня на многих строительных площадках установлены ограничения по применению забивных свай, фундаменты закладывают по современной технологии на основе буронабивных свай.

Конструкция буронабивных свай создается непосредственно в грунте. С этой целью в подготовленную уже скважину устанавливают армакаркас, потом эту основу заливают бетоном. Когда раствор застынет, и конструкция достигнет своей проектной прочности, буронабивная свая готова воспринимать предельные проектные нагрузки.  Эта технология монтажа буронабивной сваи имеет низкий уровень шума, это дает возможность закладывать фундаменты на сваях и в тех местах, где забивные сваи не используют из-за высокого уровня шума невозможно использовать. 

На видео —  установка вибромолотом армокаркаса буронабивной сваи

Для армирования буронабивных свай чаще всего используют круглый арматурный каркас. Основные параметры арматурных каркасов :

  • диаметр общего каркаса;
  • диаметр свай;
  • шаг спирали;
  • диаметр спирали;
  • диаметр продольных прутков;
  • предельная масса каркаса.

Использование армакаркасов

Основная сфера использования арматурных каркасов ─ создание новых долговечных и надежных железобетонных конструкций или укрепление тех, которые уже находятся в эксплуатации.

Широкую популярность армакаркасы завоевали при возведении разных типов инженерных объектов ─ промышленных и жилых комплексов, мостов и других специализированных строений.

На стадии заливки фундаментов ж/б конструкций обязательно используют арматурный каркас для основания, а балки для перекрытий обычно изготавливают на базе стандартных 3-х и 4-х-гранных каркасов. Арматурный каркас бывает объемным, рядным или плоским, а каркасы для свай изготавливают с квадратным или круглым сечением.

На фото — заливка бетона армокаркаса буронабивной сваи внурь обсадной трубы

Буронабивные сваи применяют при возведении фундаментов со значительной глубиной залегания твердого грунта. Буронабивная свая имеет вид цилиндрической конструкции, состоящей из армированных окружностей с малым диаметром и продольных арматур большого диаметра.

Преимущества применения каркасов из арматуры

Широкое использование армакаркасов имеет неоспоримые достоинства:

  • увеличение скорости монтажа при установке ж/б конструкций;
  • сокращение цикла производственных работ;
  • возможность использования отходов арматуры;
  • возможность применения на любых типах поверхности;
  • рост производительности труда;
  • рост рентабельности производства.

Дополнительно свайные каркасы из арматуры успешно применяют при строительстве по соседству с построенными домами, это дает возможность снимать с них динамическую нагрузку при возведении нового фундамента. Благодаря применению свай точечное строительство выигрывает там, где другие технологии использовать нельзя, даже в самых стесненных условиях.

Каркасы буронабивных свай - "ТИСЭ"

Буронабивные сваи – это цилиндрические железобетонные конструкции, часто применяемые при строительстве зданий и сооружений. Основой любой буронабивной сваи – это арматурный каркас, который отвечает за прочность. Таким образом, армирование необходимо для увеличения несущей способности: бетон отлично держит нагрузку на сжатие, а вот с растяжением, которое происходит с нижней частью конструкций, — уже труднее. Именно эта нагрузка на растяжение и возлагается на арматурный каркас в буронабивной сваи, это спасает здания от оседания и трещин на стенах. Второй составляющей буронабивной сваи является бетонное тело. Всем нам хорошо известно, что прочность железобетонных домов - явление невероятное, как говорится в народе: "Ничем не просверлишь, ничем не пробьешь". Дело в том, что при помощи арматуры, уже довольно давно, научились создавать этакий "сплав бетона и железа" – это прочный арматурный каркас, залитый бетоном. Когда грамотно применять этот материал, не жалеть средств и создавать рациональную гидроизоляционную обработку, то армированные конструкции фактически вечны. В случае, когда по проекту Вашего дома фундамент у нас будет свайно-ростверковый, ростверк низкого заглубления в 5 см. Укладка подобного фундамента начинается с установки буронабивных свай, первый шаг к изготовлению буронабивных свай — это изготовление арматурного каркаса. В таком случае арматурный каркас каждой из свай представлял собой 4 стержня ребристой арматуры, которые через каждые 40 см были соединены хомутами, также изготовленные своими силами.

По техническим рекомендациям по устройству фундаментов из буронабивных свай диаметр арматурного каркаса должен быть на 140 мм меньше диаметра скважины во избежание его заклинивания. С наружной стороны каркас должен иметь ограничители (фиксаторы), обеспечивающие необходимую толщину защитного слоя бетона.

Под каркасной арматурой для буронабивных свай считается конструкция, произведенная из металлической арматуры. Обыкновенно она создается из прутьев для разных областей армирования ж/б элементов. Арматурные каркасы, используемые для свайного фундамента и ростверка, соединяют посредством косых, а также поперечных прутков, либо специальных хомутов, создавая в итоге цельнометаллическую конструкцию. Перед тем как приступать к созданию такого каркаса для буронабивных свай и ростверка, следует произвести тщательный расчет, по которому подготовить черте.

Чаще всего армировка свай посредством каркасов клеточного типа находит применение в процессе возведения крупномасштабных промзданий и сооружений, подразумевающих заливку бетона в большом количестве.

Плоские каркасы — нескольких продольных слоев сетки, сваренных при помощи прутов. При этом продольные прутья дополнительно фиксируются при помощи поперечных либо косых прутьев.

Весь процесс изготовления арматурного каркаса для буронабивных свай фундамента можно разделить на следующие этапы.

Заготовка арматуры для свай. Допустим, Вы приобретали одиннадцатиметровую ребристую арматуру диаметром 12 мм, из которой при помощи болгарки и самого обычного маркера было сделано по 3 прутка. Для необходимого количества в 144 штуки было закуплено 48 прутков по 11 метров. Для изготовления 288 хомутов использовали гладкую 6-ти метровую арматуру диаметром 6 мм, расчет делали аналогично. Расчет необходим для того, чтобы определить размер свай и диаметр арматурных элементов. Армокаркасы используют для армировки свайно-ростверкового основания на этапе, предшествующему заливке. При условии, что расчет произведен правильно, это позволяет в некоторой степени повысить прочность изделия и степень его устойчивости к различным механическим нагрузкам.

Изготовление деревянного шаблона для сборки свай, а именно фиксации продольной арматуры. Скрепляем 2 деревянные доски саморезами. Размечаем на них по известным нам размерам 4 отверстия (стороны хомута), у нас они составляли по 15 см. Сверлим.

Изготовление хомутов. Для ускорения процесса мы приобрели ручной армагиб, это такое несложное приспособление для быстрого сгибания арматуры. С его помощью мы легко, хотя и не совсем быстро, изготовили 288 хомутов

Находим место для изготовления арматурного каркаса. На участке мы соорудили 2 простенькие конструкции из деревяшек, на которых можно было с легкостью положить продольную арматуру и без проблем закрепить на них хомуты.

Классические арматурные каркасы для свай представляют собой вязанную или сварную конструкцию из арматуры различных диаметров. Каркасы повторяют форму будущего бетонного изделия и делятся на плоские и пространственные. Плоские каркасы чаще называют арматурными сетками. Степень насыщенности железобетонных изделий стальной арматурой называется плотностью армирования и характеризуется отношением веса арматуры к объему бетона, в котором она содержится. Армирование ответственных железобетонных конструкций требует плотности 500-600 кг/м3.

Поперечное армирование хомутами. К каждой свае нам понадобилось по 8 хомутов с шагом 40 см. После того как хомуты разместили на продольной арматуре, размещаем деревянный шаблон, изготовленный заранее. Вяжем арматуру при помощи вязальной проволоки, самодельных хомутов и шуруповерта с крючком.

Круглые арматурные каркасы широко применяются для армирования буронабивных свай.

Изготовление арматурных каркасов для свай осуществляется автоматизированно, путем сварки несущих арматурных стержней с навиваемой по кругу арматурой.

Главный принцип действия оборудования, по созданию круглых арматурных каркасов, состоит в создании спирали (в автоматическом режиме). Для этого используется арматурная проволока из бухты. Накручивание осуществляется по программируемому шагу, непосредственно на продольные арматурные прутья, предварительно установленные в агрегат.

Каркасы буронабивных свай.

Для создания каркаса свайно-ростверкового фундамента потребуются следующие материалы:

  • горячекатаная катанка;
  • гладкий арматурный стержень;
  • рифленый арматурный стержень;
  • специальная проволока;
  • бухтовая рифленая арматура
  • бухтовая гладкая арматура

Металлические прутья в ряде случаев дополнительно покрывают особым противокоррозийным составом. Но чаще изначально предпочитают применять изделия из низкоуглеродистой стали, которые по своим характеристикам не подвержены коррозийному воздействию. Изготовлением армированных каркасов для буронабивных фундаментов могут заниматься, как предприятия, так и специалисты на месте строительства.

Разнообразные подходы дают возможность делать не только каркасы стандартных форм, но и индивидуальные, расчет которых происходил под конкретное изделие. В последнем случае для выполнения работы требуется тщательно подготовленный чертеж.

Существует две технологии изготовления каркасов для армирования свай фундамента и ростверка:

  • автоматизирования сборка на предприятии;
  • ручная сборка.

Каркасы для фундаментов свайного типа

Обычно для решения таких задач, как армировка свай и ростверка фундамента, используется круглый каркас арматуры. Особенно востребованными армокаркасы оказываются в процессе строительства жилых и промышленных комплексов, а также всевозможных специализированных зданий и сооружений. При этом на этапе заливки фундамента в обязательном порядке применяются стандартные арматурные каркасы для свай, а балки перекрытий производятся из трех- и четырехгранных каркасов.

Применение буронабивных свай чаще всего практикуется при возведении оснований зданий с существенной глубиной залегания твердого грунта. Преимущества применения каркасов из арматуры для свайно-ростверкового фундамента при этом оказываются совершенно очевидны:

снижение времени, затрачиваемого на монтаж, в процессе установки железобетонных конструкций;

  • сокращение цикла работ;
  • возможность применения для работы арматурных отходов;
  • повышение работоспособности;
  • повышение уровня рентабельности производства.

Современные инженеры и строители предпочитают применять два вида каркасов, в том числе арматурных каркасов для буронабивных свай:

-объемные;

-плоские.

Объемные каркасы бывают квадратными или круглыми. Соответственно СНиПУ такие каркасы используются для укрепления буронабивных опор.  Диаметры сечений таких металлических конструкций, как правило, колеблется от 8 мм. до 12 мм., диаметр сваи при этом должен быть стабильным - 0,3 м.  Объемные каркасы для буронабивных опор активно применяют при заливках особо больших масс бетонного раствора. Сами каркасы принято выполнять, применяя сварные решетки. Решеток должно быть от 3 до 10.

Плоскими арматурными каркасами являются изделия, которые активно применяются в строительских целях, во время армирования железобетонной конструкции линейного типа. Применение плоского арматурного каркаса значительно снижает затраты за выполненные работы, увеличивая при этом прочностные характеристики. Ведь трещины в такой конструкции не могут образовываться, а вероятность прогиба сводится к нулю.

Плоские каркасные конструкции представляют собой два и три продольных слоя арматурных сеток, соединенных прутьями. СНиП требует, чтобы прутья соединялись между собой при помощи других прутьев поперечного, наклонного или непрерывного типа.

Свайные каркасы часто применяются для возведения зданий рядом с уже построенными домами. Это позволяет существенно снизить динамическую нагрузку при закладке нового фундамента. Применение буронабивных свай при создании фундамента позволяет применять методику точечного строительства в тех местах, где использование других технологий оказывается невозможно или затруднительно.

Применение круглых арматурных каркасов позволяет увеличить скорость монтажа железобетонных конструкций, сократить цикл производственных работ, избавиться от отходов арматуры.

Основным материалом, который применяется для изготовления каркасов из арматуры, является специальная проволока ВП-1, а также гладкая или горячекатаная катанка, гладкие и рифленые арматурные стержни, рифленая бухтовая арматура, диаметр которой составляет 6-12 мм. Правильные пропорции отдельных компонентов позволяют приготовить крепкий и надежный продукт, который будет полностью отвечать всем необходимым требованиям по эксплуатации.

Несколько слов о создания решетки и каркаса. Решетки сварного типа соединяют друг с другом при помощи металлических стержней, ориентированных перпендикулярно плоскости ростверка.

Следует отметить, что такие каркасные конструкции подходят для опор любых диаметров. СНиП позволяет изменять форму и подстраивать ее под необходимый метод производства. Каркас, имеющий особо крупные размеры, осуществляют индивидуально, каркас для буронабивной опоры необходимо изготавливать при помощи автоматизированных сварочных линий. 

Во многих городах России на строительных площадках установлены ограничения на применение забивных свай, фундаменты строятся с помощью применения технологии буронабивных свай. Буронабивная свая изготавливается непосредственно в грунте. В пробуренную скважину устанавливается арматурный каркас и заливается бетонная смесь. После затвердевания бетона и достижения им проектной прочности свая может воспринимать проектные нагрузки.

Каркасы буронабивных свай могут применяться для строительства зданий различного назначения: производственного, жилого или общественного типа. Применение данного вида свай возможно практически на всех типах грунта, исключением являются скальные и крупнообломочные.

Как составить график изгиба стержней для армирования свай

В этом посте мы увидим «График изгиба стержня для свайного фундамента».

Надеюсь, вы прочитали другие сообщения с расписанием изгиба штанги.

Итак, приступим.

Основы свайного фундамента

Свайные фундаменты используются в следующих случаях, когда требуется глубокий фундамент. Проверить - типы фундамента.

  • Грунт очень сжимаемый и слишком слаб, чтобы выдерживать нагрузку, поэтому нам нужно достичь твердых слоев
  • Конструкция имеет горизонтальные силы, которые возникают в небоскребах (сила ветра)
  • Uplifting Force с помощью эксэкс
.

% PDF-1.5 % 2466 0 obj> endobj xref 2466 55 0000000016 00000 н. 0000013188 00000 п. 0000013424 00000 п. 0000013469 00000 п. 0000013601 00000 п. 0000013635 00000 п. 0000013876 00000 п. 0000013904 00000 п. 0000014418 00000 п. 0000014822 00000 п. 0000015228 00000 п. 0000015266 00000 п. 0000015374 00000 п. 0000018044 00000 п. 0000122480 00000 н. 0000122559 00000 н. 0000122633 00000 н. 0000122714 00000 н. 0000122798 00000 н. 0000122843 00000 н. 0000122938 00000 н. 0000122983 00000 н. 0000123101 00000 п. 0000123146 00000 н. 0000123277 00000 н. 0000123322 00000 н. 0000123446 00000 н. 0000123491 00000 н. 0000123614 00000 н. 0000123659 00000 н. 0000123816 00000 н. 0000123861 00000 н. 0000124024 00000 н. 0000124069 00000 н. 0000124201 00000 н. 0000124245 00000 н. 0000124396 00000 н. 0000124440 00000 н. 0000124563 00000 н. 0000124607 00000 н. 0000124715 00000 н. 0000124759 00000 н. 0000124886 00000 н. 0000124930 00000 н. 0000125039 00000 н. 0000125083 00000 н. 0000125192 00000 н. 0000125236 00000 н. 0000125329 00000 н. 0000125372 00000 н. 0000125466 00000 н. 0000125508 00000 н. 0000125598 00000 п. 0000125640 00000 н. 0000001396 00000 н. трейлер ] >> startxref 0 %% EOF 2520 0 obj> поток х | [S

.

Введение в обучение с подкреплением Q-Learning с деревьями решений | Автор: Чакрит Яу

Этот проект начался как мое чистое любопытство, можно ли использовать другие алгоритмы для Q-Learning. Таким образом, мы не касаемся более глубоких вопросов, таких как реализация деревьев решений специально для обучения с подкреплением или более глубокий анализ производительности и скорости и т. Д.

Мы собираемся использовать одну из самых простых задач RL для экспериментов - CartPole V0. Эта среда предоставляется OpenAI Gym - библиотекой, состоящей из различных сред для тестирования систем обучения с подкреплением.В основном на тележке есть шест. Вы можете двигаться влево или вправо. Ваша цель - как можно дольше не допустить опрокидывания шеста.

Я раздвоил репозиторий GitHub от Грега Сурмы, где он предоставляет модель Keras для решения проблемы CartPole. Я повторно использовал большую часть его кода, изменяя только те части, которые нужно изменить. Мои благодарности Грегу Сурме за его кодовую базу.

Давайте рассмотрим, что делает модель Сурмы, шаг за шагом.

  1. Игра CartPole инициализирована. Количество действий записывается.
  2. На каждом временном шаге нам дается кортеж (x1, x2, x3, x4) . Этот кортеж представляет текущее состояние тележки и шеста.
  3. Мы сообщаем игре, хотим ли мы двигаться влево или вправо. Решение принимается на основе нашей модели (обычно нейронных сетей) путем запроса модели ожидаемого вознаграждения за выполнение каждого действия в этом состоянии.
  4. После выполнения действия получаем новое состояние и награду.
  5. Мы просим нашу модель предсказать ожидаемые награды за каждое действие в новом состоянии.Возьмите наивысшее вознаграждение в качестве ожидаемого вознаграждения за пребывание в этом новом состоянии, дисконтируйте его с коэффициентом ГАММА и прибавьте его к существующей награде. Это новое значение q (или ожидаемое вознаграждение) для данной комбинации состояния и действия.
  6. Поместите кортеж состояния / действия / награды / нового состояния в какой-то буфер или память.
  7. Выбрать всю или часть памяти. Частично соответствует модели с вызванной памятью.
  8. Вернитесь к шагу 2. Повторяйте, пока не получите удовлетворительный результат.

Как видите, весь процесс прост при применении с нейронными сетями (или, по крайней мере, с Keras). Мы можем запросить у нейронных сетей прогнозы ожидаемых вознаграждений за действия даже до того, как сети будут обучены (конечно, вы получаете случайные числа, но это нормально для первого раунда). После вычисления нового q-значения мы можем выбрать экземпляр из памяти и подогнать его к нейронным сетям, не теряя всего, что мы уже обучили (правда, будет деградация.Это, в первую очередь, основа для введения воспроизведения опыта.)

Если мы хотим заменить нейронные сети другими регрессорами, есть несколько требований.

  1. Регрессоры должны поддерживать несколько меток. Я поставил «должен» вместо «должен», потому что это не существенно. С помощью нескольких строк кода мы могли бы реализовать индивидуальный регрессор для каждого действия отдельно; но все же встроенная поддержка нескольких меток более удобна для работы.
    Большинство алгоритмов в SKLearn изначально поддерживают множественные метки, поэтому вы можете в значительной степени отказаться от линейной регрессии, SVR и случайного леса.Деревья с градиентным усилением немного сложнее, поскольку популярные библиотеки, такие как XGBoost, CatBoost и LightGBM, не предлагают поддержки нескольких меток. К счастью, мы можем обернуть их в MultiOutputRegressor SKLearn и решить эту проблему.
  2. Поскольку GBT должен быть пригоден, прежде чем вызывать прогноз, мы должны предоставить свои собственные ожидаемые награды для первого раунда. Это включает в себя сначала проверку, подходит ли модель. В противном случае мы можем указать фиксированное значение или случайное число. В качестве начальных значений я выбрал 0.
  3. Частичная установка GBT невозможна. Вместо того, чтобы подбирать по одному экземпляру за раз, мы должны построить всю память вместе с массивом q-значений и полностью переобучать регрессор на каждом временном шаге.
  4. Поскольку мы переобучаем всю память, устаревший опыт с устаревшим значением q никогда не исчезнет сам по себе. В отличие от нейронных сетей, мы должны ограничить размер памяти гораздо меньшим числом. В моем случае я выбрал 1000.
  5. В качестве побочного эффекта мы должны повысить минимальную скорость исследования, чтобы учащийся не застрял.Вполне вероятно, что небольшая память, которая у нас есть, будет заполнена некачественным опытом, поэтому нам нужно продолжить изучение.

На следующем рисунке показаны изменения, которые я внес в исходный код. Я использую LightGBM в эксперименте из-за его производительности и скорости.

Изменения, внесенные мной в исходный код

Замечание Я запускаю код через Jupyter Notebook, который, на удивление, был быстрее, чем запуск из командной строки. Возможно, это как-то связано с работой на машине с Windows.

Код также можно найти на GitHub.

.

Практическое применение обучения с подкреплением в промышленности - O’Reilly

Шквал заголовков вокруг AlphaGo Zero (самой последней версии системы искусственного интеллекта DeepMind для игры в го) означает, что интерес к обучению с подкреплением (RL) обязательно возрастет. Помимо глубокого обучения, RL - одна из самых популярных тем в AI. Для большинства компаний RL - это то, что нужно изучить и оценить, но немногие организации определили варианты использования, в которых RL может играть роль.Вступая в 2018 год, я хочу кратко описать области, в которых применялся RL.

RL используется для обозначения набора задач , а - набора методов, поэтому давайте сначала определимся с тем, что RL будет означать для остальной части этого поста. Вообще говоря, цель RL - научиться сопоставлять наблюдения и измерения с набором действий, пытаясь при этом максимизировать какое-то долгосрочное вознаграждение. Обычно это касается приложений, в которых агент взаимодействует со средой, пытаясь изучить оптимальную последовательность решений.Фактически, многие из начальных приложений RL находятся в областях, где давно искали автоматизацию последовательного принятия решений. RL представляет собой набор проблем, отличный от традиционного онлайн-обучения, поскольку вы часто имеете некоторую комбинацию отложенной обратной связи, скудных вознаграждений и (что наиболее важно) рассматриваемые агенты часто могут влиять на среду, с которой они взаимодействуют.

Учись быстрее. Копать глубже. Смотрите дальше.

Глубокое обучение как метод машинного обучения начинает использоваться компаниями в различных приложениях машинного обучения. RL пока не вошел во многие компании, и моя цель - обрисовать некоторые области, в которых появляются приложения.

Рис. 1. Слайд любезно предоставлен Беном Лорикой.

Прежде чем я сделаю это, позвольте мне начать с перечисления некоторых проблем, с которыми сталкивается RL на предприятии. Как отметил Эндрю Нг в своем выступлении на нашей конференции по искусственному интеллекту в Сан-Франциско, RL требует большого количества данных, и поэтому его часто связывают с областями, в которых доступны моделируемые данные (игровой процесс, робототехника).Также нелегко взять результаты из исследовательских работ и применить их в приложениях. Воспроизведение результатов исследований может быть сложной задачей даже для исследователей RL, не говоря уже о обычных специалистах по данным (см. Эту недавнюю статью и эту запись в блоге OpenAI). Поскольку машинное обучение внедряется в критически важных ситуациях, воспроизводимость и способность оценивать ошибки становятся важными. Так что, по крайней мере, на данный момент RL может не подходить для критически важных приложений, требующих постоянного контроля.

Несмотря на

AI, уже есть интересные приложения и продукты, которые полагаются на RL.Существует множество настроек, включающих персонализацию или автоматизацию четко определенных задач, которые выиграют от последовательного принятия решений, которое RL может помочь автоматизировать (или, по крайней мере, там, где RL может дополнить человека-эксперта). Ключевым моментом для компаний является то, чтобы начать с простых сценариев использования, соответствующих этому профилю, а не с чрезмерно сложных проблем, «требующих ИИ». Чтобы сделать вещи более конкретными, позвольте мне выделить некоторые из ключевых областей приложений, в которых RL начинает появляться.

Робототехника и промышленная автоматизация

Применение RL в многомерных задачах управления, таких как робототехника, было предметом исследований (в академических кругах и в промышленности), и стартапы начинают использовать RL для создания продуктов для промышленной робототехники.

Промышленная автоматизация - еще одно перспективное направление. Похоже, что технологии RL от DeepMind помогли Google значительно снизить потребление энергии (HVAC) в собственных центрах обработки данных. Стартапы заметили большой рынок решений для автоматизации. Бонсай - один из нескольких инструментов создания стартапов, позволяющих компаниям использовать RL и другие методы для промышленных приложений. Типичным примером является использование ИИ для настройки машин и оборудования, где в настоящее время используются опытные люди-операторы.

Рис. 2. Слайд от Марка Хаммонда, использован с разрешения.

Имея в виду промышленные системы, компания Bonsai недавно перечислила следующие критерии того, когда RL может быть полезным для рассмотрения:

  • Вы используете моделирование, потому что ваша система или процесс слишком сложны (или слишком физически опасны) для обучения машин методом проб и ошибок.
  • Вы имеете дело с большими пространствами состояний.
  • Вы стремитесь расширить возможности специалистов-аналитиков и экспертов в предметной области за счет оптимизации операционной эффективности и оказания поддержки в принятии решений.

Наука о данных и машинное обучение

Библиотеки машинного обучения

стали проще в использовании, но выбор подходящей модели или архитектуры модели все еще может быть сложной задачей для специалистов по данным. Поскольку глубокое обучение становится техникой, используемой специалистами по обработке данных и инженерами по машинному обучению, инструменты, которые могут помочь людям определять и настраивать архитектуры нейронных сетей, становятся активной областью исследований. Несколько исследовательских групп предложили использовать RL, чтобы сделать процесс проектирования архитектур нейронных сетей более доступным (MetaQNN от MIT и Net2Net).AutoML от Google использует RL для создания современных архитектур нейронных сетей, генерируемых машинами, для компьютерного зрения и языкового моделирования.

Помимо инструментов, упрощающих создание моделей машинного обучения, некоторые думают, что RL окажется полезным для разработчиков программного обеспечения при написании компьютерных программ.

Образование и обучение

Онлайн-платформы начинают экспериментировать с использованием машинного обучения для создания персонализированного опыта.Несколько исследователей изучают использование RL и других методов машинного обучения в системах обучения и персонализированного обучения. Использование RL может привести к созданию систем обучения, которые предоставляют индивидуальные инструкции и материалы, адаптированные к потребностям отдельных студентов. Группа исследователей разрабатывает алгоритмы RL и статистические методы, которые требуют меньше данных для использования в будущих системах обучения.

Здоровье и медицина

Настройка RL агента, взаимодействующего со средой, получающего обратную связь на основе предпринятых действий, имеет сходство с проблемой изучения политики лечения в медицинских науках.Фактически, многие приложения RL в здравоохранении в основном относятся к поиску оптимальной политики лечения. В недавних статьях упоминалось применение RL для использования медицинского оборудования, дозирования лекарств и двухэтапных клинических испытаний.

Текстовые, речевые и диалоговые системы

Компании собирают много текста, и хорошие инструменты, которые могут помочь разблокировать неструктурированный текст, найдут пользователей. Ранее в этом году исследователи искусственного интеллекта в SalesForce использовали глубокий RL для абстрактного резюмирования текста (метод автоматического создания резюме из текста на основе контента, «абстрагированного» из некоторого исходного текстового документа).Это может быть область, в которой инструменты на основе RL получают новых пользователей, поскольку многим компаниям нужны более совершенные решения для интеллектуального анализа текста.

RL также используется, чтобы позволить диалоговым системам (то есть чат-ботам) учиться на взаимодействиях пользователей и, таким образом, помогать им улучшаться с течением времени (многие корпоративные чат-боты в настоящее время полагаются на деревья решений). Это активная область исследований и инвестиций венчурного капитала: см. «Семантические машины» и «VocalIQ», приобретенные Apple.

СМИ и реклама

Microsoft недавно описала внутреннюю систему под названием Decision Service, которая с тех пор стала доступной в Azure.В этом документе описываются приложения Decision Service к рекомендациям по содержанию и рекламе. Decision Service в более общем плане нацелена на продукты машинного обучения, которые страдают от режимов отказа, включая «петли обратной связи и предвзятость, распределенный сбор данных, изменения в среде, а также слабый мониторинг и отладку».

Другие приложения RL включают оптимизацию кросс-канального маркетинга и системы назначения ставок в режиме реального времени для медийной рекламы в Интернете.

Финансы

Начав свою карьеру в качестве ведущего аналитика в хедж-фонде, меня не удивило то, что немногие финансовые компании готовы выступать официально.В общем, я встречал квантов и трейдеров, которые оценивали глубокое обучение и RL, но не нашли достаточных оснований для использования этих инструментов, кроме небольших пилотов. В то время как потенциальные приложения в сфере финансов описаны в исследовательских работах, лишь немногие компании описывают программное обеспечение в производстве.

Единственным исключением является система, используемая для исполнения сделок в JPMorgan Chase. В статье Financial Times описана система на основе RL для оптимального исполнения сделок. Система (получившая название «LOXM») используется для выполнения торговых приказов с максимальной скоростью и по наилучшей возможной цене.

Как и в случае с любой новой техникой или технологией, ключом к использованию RL является понимание его сильных и слабых сторон, а затем поиск простых вариантов использования, на которых можно его попробовать. Не поддавайтесь шумихе вокруг ИИ - скорее, рассматривайте RL как полезную технику машинного обучения, хотя и лучше всего подходящую для определенного класса проблем. Мы только начинаем видеть RL в корпоративных приложениях. Наряду с постоянным исследованием алгоритмов начинают появляться многие программные инструменты (библиотеки, симуляторы, среды распределенных вычислений, такие как Ray, SaaS).Но справедливо сказать, что некоторые из этих инструментов содержат примеры, предназначенные для пользователей, заинтересованных в отраслевых приложениях. Однако уже есть несколько стартапов, которые включают RL в свои продукты. Итак, прежде чем вы это узнаете, вы, возможно, скоро получите пользу от разработок в области RL и связанных с ней методов.

Связанные ресурсы :

.

Обучение с подкреплением - Реализация Grid World | Джереми Чжан

Grid Board

Правило простое. Ваш агент / робот начинается в левом нижнем углу (знак «старт») и заканчивается на +1 или -1, что является соответствующей наградой. На каждом этапе у агента есть 4 возможных действия, включая вверх, вниз, влево и вправо, тогда как черный блок - это стена, через которую ваш агент не сможет проникнуть. Чтобы упростить задачу, наша первая реализация предполагает, что каждое действие является детерминированным , то есть агент пойдет туда, куда он намеревается.Например, когда агент решает предпринять действие в (2, 0), он приземлится в (1, 0), а не (2, 1) или где-то еще. (Мы добавим неопределенности во вторую реализацию) Однако, если агенты ударились о стену, она останется на том же месте.

Итак, давайте взломать код! Во-первых, давайте установим несколько общих правил доски. (полный код)

И как сеточная игра, ей нужно состояние, чтобы оправдывать каждое состояние (позицию) нашего агента, давая вознаграждение в соответствии с его состоянием.

Когда наш агент выполняет действие, состояние должно иметь функцию, чтобы принимать действие и возвращать допустимую позицию следующего состояния.

Это часть искусственного интеллекта, так как наш агент должен уметь извлекать уроки из процесса и мыслить как человек. Ключ волшебства - это итерация значений.

Итерация значений

То, что наш агент, наконец, узнает, является политикой, а политика - это отображение состояния на действие , просто указывает, что агент должен делать в каждом состоянии. В нашем случае, вместо изучения сопоставления состояния с действием, мы будем использовать итерацию значений, чтобы сначала изучить сопоставление состояния со значением (которое является предполагаемой наградой), и на основе оценки в каждом состоянии наш агент будет выбирать лучшее действие, дающее наибольшую предполагаемую награду.

Здесь не будет какой-либо капризной, ломающей голову математики, поскольку суть итерации значений удивительно лаконична.

итерация значений

В этом суть итерации значений, супер аккуратно, не так ли? Эта формула почти применима ко всем задачам обучения с подкреплением, позвольте мне объяснить, как наш агент эволюционирует от младенца до эксперта на основе этой формулы. Значение итерации, как и ее название, обновляет свое значение (оценочное вознаграждение) на каждой итерации (в конце игры).

Сначала наш джентльмен ничего не знает о сеточном мире (среде), поэтому он просто инициализирует все награды как 0. Затем он начинает исследовать мир, хаотично ходя по нему, конечно, вначале он выдержит много неудач, но это совершенно нормально. Когда он достигает конца игры, либо вознаграждение +1, либо вознаграждение -1, вся игра сбрасывается, и вознаграждение распространяется в обратном порядке, и в конечном итоге оценочное значение всех состояний на этом пути будет обновлено на основе формулы выше.

Давайте подробнее рассмотрим формулу. V (St) слева - это обновленное значение этого состояния, справа - текущее не обновленное значение, а α - скорость обучения. Формула просто говорит, что обновленное значение состояния равно текущему значению плюс временная разница, которую агент узнал из этой итерации игры за вычетом предыдущей оценки. Например, предположим, что есть 2 состояния, S1 и S2 , оба из которых имеют оценочное значение 0, и в этом раунде игры наш агент переходит с S1 на S2 и получает награду 1, затем новая оценка S1 = S1 + α (S2 - S1) , что составляет 0 + 0.1 (1-0) = 0 (предположим, что α равно 0,1, а вознаграждение на уровне S1 равно 0)

Мы записываем все состояния нашего агента, и в конце игры мы обновим оценки в обратном порядке .

Разведка и эксплуатация

И последнее, о чем нам нужно поговорить. Как только наш агент найдет путь для получения награды +1, должен ли он придерживаться его и всегда следовать по этому пути (эксплуатация) или он должен давать шанс другому пути (исследование) и ожидать более короткий путь? Фактически, мы будем балансировать разведку и эксплуатацию, чтобы наш агент не застрял в локальном оптимальном режиме.Здесь наш агент выберет действие, основанное на определенной скорости исследования

Играть

Вот и все! Это все, что нам нужно для игры в сеточный мир. Мы можем начать и позволить нашему агенту играть в игру!

50 раундов игры

Это оценки каждого состояния после прохождения 50 раундов игры. Поскольку наше действие детерминировано, мы можем получить наилучшее действие в каждом состоянии, следуя наивысшей оценке! Полный код здесь, поиграйте с ним и добро пожаловать, если вы найдете что-то для обновления!

На данный момент мы все сосредоточены на итерации значений и детерминированном игровом мире.Однако в реальной ситуации агент не всегда оказывается в положении, в котором он надеется попасть. Давайте глубже исследуем недетерминированную игру и Q-обучение.

Ссылки

[1] https://www.cs.swarthmore.edu/~bryce/cs63/s16/slides/3-21_value_iteration.pdf

[2] https://github.com/JaeDukSeo / обучение-подкрепление-введение

.

Смотрите также