Назначение изоляционных материалов


классификация, применение, свойства и характеристики

Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

к содержанию ↑

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

к содержанию ↑

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

к содержанию ↑

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

к содержанию ↑

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

к содержанию ↑

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

к содержанию ↑
Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Жидкие электроизоляторы можно разделить на три основные группы:

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.

к содержанию ↑
Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

к содержанию ↑

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

к содержанию ↑
Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

к содержанию ↑
Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

к содержанию ↑

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Электроизоляционные материалы: классификация, применение, свойства и характеристики

Изоляционный материал, виды изоляции, жидкая изоляция для проводов

В этой статье пойдет речь о таком важном элементе электрического кабеля, как изоляция. В общих чертах будет освещена тема о характеристиках и свойствах изоляционных материалов, сфере применения электроизоляторов.

Электрическая изоляция

Электрическая изоляция

Представляет собой слой материала, не способного проводить электричество, или, другими словами, диэлектрика. Покрытая таким материалом металлическая токопроводящая жила надежно защищена от контакта с другим проводником, а также не способна нанести повреждения человеку, производящему работы с ней.

Как изоляционные материалы выступают следующие диэлектрики: стекло, керамика, различные виды полимеров, слюда. Одной из разновидностей изоляции является воздушная. Конструкция ее примечательна тем, что жилы проводников расположены в пространстве таким образом, что между ними находится прослойка воздуха, которая ограничивает их контакт.

Исторически первые образцы изоляции выполнялись из навитой на медные провода бумаги, которая была пропитана парафином, или резины. На сегодняшний день резина используется для проводов и кабелей, эксплуатирующихся в условиях больших температурных перепадов.

Срок службы изоляции сильно зависит от температуры рабочей среды.  Достаточно превышения в несколько градусов для снижения срока эксплуатации материала изоляции примерно в два раза.

Характеристики электроизоляторов

Ко всем без исключения электроизоляторам предъявляются общие требования.

Электрическая прочность

Главная задача диэлектрика – обеспечить требуемый уровень значения величины электрической прочности на пробой. Данная величина находится в прямой зависимости от того, насколько толстая фарфоровая стенка изолятора. Нарушение прочности происходит при пробое твердого диэлектрика или в результате разряда по поверхности изолятора. Прочность характеризуется напряжением промышленной частоты, которое способен выдержать изолятор при сухой и мокрой поверхности, а также импульсным напряжением при испытании.  Эту величину проверяют специальным прибором – мегаомметром.

Удельное сопротивление

Изоляционный материал пропускает небольшую часть электрического тока. Эта величина является несоизмеримо малой, в сравнении с теми токами, которые протекают постоянно по жилам. Электрический ток может идти через два пути: сквозь сам изоляционный материал или по его поверхности. Удельным сопротивлением называется величина сопротивления единицы объема материала. Она равна отношению произведений величин сопротивлений тока, идущего по изолятору и сквозь него, к их же сумме.

В качестве единицы измерения данной величины взято значение сопротивления изоляционного материала, выполненного в форме куба с гранью 1 см, где направление тока совпадает с вектором направления двух наружных противоположных граней. Величина удельного сопротивления зависит от агрегатного состояния материала и других важных величин.

Диэлектрическая проницаемость

После помещения изолятора в электромагнитное поле происходит изменение направления в пространстве частиц с плюсовыми зарядами: они выстраиваются по силовым линиям электромагнитного поля. Электронные оболочки меняют свою ориентацию в противоположную сторону. Молекулы поляризуются. При поляризации диэлектриков происходит образование собственного поля у молекул, которое действует в сторону, противоположную направлению общего поля. Эта способность определяется диэлектрической проницаемостью.

Важно! Диэлектрическая проницаемость характеризует степень поляризации диэлектрика. Она оказывает влияние на емкость таких элементов, как конденсаторы. При их изготовлении следует применять изоляцию с большой величиной диэлектрической проницаемости. Измерение величины производят в фарадах на метр погонный (Ф/м). Единица измерения получила свое название в честь великого английского ученого Майкла Фарадея, внесшего весомый вклад в науку в области электромагнетизма.

Угол диэлектрических потерь

Диэлектрические потери – энергия электрического поля, рассеивающаяся в изоляционном материале за определенную единицу времени. Энергия никуда не исчезает, а переходит из одного состояния в другое (тепло). Чем выше величина потерь, тем больше риск теплового разрушения диэлектрика. Эта характеристика электроизолирующего материала измеряется тангенсом угла диэлектрических потерь. Зависимость тангенса угла от значения диэлектрических потерь линейная.

Сферы применения электроизоляторов

Чтобы выяснить, где применяются электроизоляторы, достаточно просто вспомнить, где распространена электропроводка. Это могут быть как бытовые системы электроснабжения и электроосвещения, так и промышленные. В электрических силовых кабелях, прокладываемых снаружи и под землей, содержится несколько слоев такой изоляции. В приборостроении отдельные элементы конструкции приборов также приходится изолировать от напряжения. Это могут быть как небольшие элементы разных плат, так и целые узлы. Такая изоляция позволяет сохранить эксплуатационные характеристики материалов, расположенных вблизи токоведущих жил.

Жидкие диэлектрики

Жидкая изоляция

К такому виду диэлектриков относят различные виды масел, лаков, паст и смол. Большое распространение получили продукты переработки нефти – минеральные масла. Такие изоляторы используются в трансформаторных подстанциях небольшой мощности, масляных выключателях, кабелях и конденсаторах. Жидкая изоляция для проводов применяется при подготовке к работе кабелей и конденсаторов.

Заметка. В качестве альтернативы жидкой изоляции можно применить спрей для проводов. Дистиллированная вода также является диэлектриком.

Технические характеристики жидких диэлектриков напрямую зависят от их чистоты. Чем больше загрязнены масло, вода и другие подобные диэлектрические жидкости, тем более худшими характеристиками они обладают. Очистка таких жидкостей производится при помощи дистилляции или ионообменной сорбции.

Твердые диэлектрики

Твердая изоляция

Это самая распространённая и популярная группа электроизолирующих материалов. К таким изоляторам относят:

  • Стекла из неорганических веществ.
  • Установочная и конденсаторная керамика.
  • Мусковит, флогопит.
  • Асбест.
  • Пленки из неорганических материалов.

Кроме этого, твердые изоляторы делятся на полярные, неполярные и сегнетоэлектрические. Критерием разделения выступает степень поляризации. К основным свойствам твердых изоляторов также можно отнести их химическую стойкость, трекингостойкость и дендритостойкость. Первое качество характеризует способность материала противостоять агрессивным химическим средам, типа кислот и щелочей. Трекингостойкость – это способность противостоять воздействию электрической дуги. Дендритостойкость характеризует устойчивость к появлению дендритов. Дендрит – продукт осадка частиц в электролите, получаемый при воздействии электрического тока высоких плотностей.

Помимо всего этого, провода также защищают от электромагнитных помех. В качестве такой защиты используют фольгу, спиральную обмотку, оплетку жил.

Газообразные диэлектрики

Данные виды изоляции можно разделить на две большие группы: материалы естественного происхождения и искусственные. Вдыхаемый человеком обыкновенный воздух является естественным изоляционным материалом, к искусственным относят различные газы. Воздух не подходит для использования в герметично закрытых корпусах оборудования из-за большого процента содержания кислорода в нем. Актуальным для таких установок будет электротехнический газ. Газообразные электроизоляционные материалы имеют значение диэлектрической проницаемости, равное 1. Преимуществами этой группы диэлектриков являются небольшая величина диэлектрических потерь и степень пробоя.

Неорганические диэлектрики

К такому типу изоляции относятся преимущественно вещества, химическая формула которых не содержит органических элементов. К наиболее распространенным электроизоляционным материалам подобного рода относится следующий ряд: стекло и его разновидности, слюда, керамические материалы, такие, как стеатит, радиофарфор, термоконд. Производные стекла используются для изготовления различных стеклянных трубок, баллонов. Фарфоровая изоляция часто используется для создания конденсаторов, резисторов.

Классификация по нагревостойкости

Ниже в статье приведены данные по классам нагревостойкости диэлектриков, взятые из  ГОСТ 8865-93 «Системы электрической изоляции», п.2 2.1, таблица №1:

  • Y – материалы из не погруженных в жидкий диэлектрик бумаги, картона, целлюлозы, шелка, различных волокнистых материалов. Температура, которую способна выдержать изоляция, – 90°С.
  • A – относятся материалы предыдущего класса, а также из искусственного шелка, которые пропитаны масляными и другими лаками. Температура, которую способна выдержать изоляция, – 105°С.
  • E – это синтетические и органические пленки, смолы, компаунды. Температура, которую способна выдержать изоляция, – 120°С.
  • B – основу изолятора составляют слюда, асбест, стекловолокно, которые были изготовлены с применением органических связующих материалов обычной нагревостойкости. Температура, которую способен выдержать такой материал, – 130°С.
  • F – основу изолятора составляют слюда, асбест, стекловолокно, которые пропитаны смолами и лаками соответствующей нагревостойкости. Изолятор выдерживает нагрев до 155°С.
  • H – основу изолятора составляют слюда, асбест, стекловолокно, которые применяются с кремнийорганическими связующими и пропитками. Ткань характеризуется высокой температурной устойчивостью – до 180°С.
  • C – основу изолятора составляют слюда, асбест, стекловолокно, которые используются безо всяких связующих веществ органического происхождения. Самые устойчивые к температурному воздействию среди изоляционных материалов – до 180°С.

Электроизоляционные лакированные ткани

Лакированные изолирующие ткани

Этот вид диэлектрика характеризуется тем, что изготавливается на основе ткани, пропитанной лаком. Нанесение изолятора на ткань происходит при помощи кисточки. Такой лак образует пленку, обладающую требуемыми диэлектрическими свойствами.

Ткань, применяемая в такой изоляции, преимущественно хлопчатобумажная. Также встречаются материалы на шелковой, капроновой и стеклянной основе. Стекловолокнистая ткань характеризуется повышенной устойчивостью к высоким температурам. Основной сферой применения таких тканей будут являться электрические машины и аппараты, где важна гибкость изоляционного материала.

Заметка. Наиболее часто использующимся электриками изолятором подобного вида является обычная ПВХ лента или, по-простому, изолента.

В этой статье были кратко рассмотрены типы изоляции, свойства и условия применения данного материала. Статья будет полезна как опытным электротехникам, так и впервые пробующим свои силы домашним мастерам. Она поможет подобрать требуемую изоляцию проводников и кабелей, согласно конкретным условиям рабочего процесса.

Видео

виды, свойства, характеристики и области применения :: SYL.ru

Изоляционные материалы предназначены для ограничения конструкций и отдельных элементов от контакта с теми или иными средами. По этому принципу работают строительные водо-, паро- и теплоизоляционные материалы. В сферах, где используются электротехнические проводники, требуется изоляция другого рода – в виде диэлектриков. Их задача заключается в исключении контактов между активными эксплуатируемыми проводниками тока и материалами, которые не рассчитываются на обеспечение данной функции. В качестве целевых объектов могут выступать технические средства, прибора, строительные конструкции и даже декоративные покрытия. В свою очередь, электроизоляционные материалы создают барьер для прохождения электрического тока независимо от того, переменный он или постоянный.

Классификации изоляторов

Электроизоляторы различаются по своему происхождению и агрегатному состоянию. Что касается происхождения, то в качестве признаков выделяют принадлежность к органическим и неорганическим материалам, а также к натуральному и синтетическому сырью. К природным материалам можно отнести слюду, которая характеризуется прочностью, гибкостью и способностью к расщеплению. Это неорганический диэлектрик естественного происхождения. И напротив, в группе синтетических органических материалов можно отметить химические высокомолекулярные соединения. В готовом к использованию виде они предлагаются как пластмассы и эластомеры. Основные эксплуатационные различия определяет классификация электроизоляционных материалов по агрегатному состоянию. Выделяются твердые и жидкостные, а также газообразные диэлектрики.

Свойства изоляторов тока

Основная задача диэлектрика заключается в обеспечении изоляционной функции. Поэтому в качестве базовых эксплуатационных свойств можно отметить повышенное удельное сопротивление, небольшой тангенс потерь диэлектрика и высокое пробивное напряжение – уже упомянутый пробой. Сопротивление определяет, насколько материал сможет препятствовать проводимости тока при разных параметрах контактирующей электрической цепи. Потери диэлектрика, в свою очередь, указывают на влияние изолятора на показатели активного проводника – нормативно это значение должно стремиться к нулю, но чаще всего высокая сопротивляемость как раз приводит и к повышению потерь в основной цепи. Немаловажны и пробивные свойства электроизоляционных материалов, которые определяются напряжением. В данном случае можно говорить о непосредственной проницаемости целевого материала. При этом все перечисленные свойства фиксируются лишь в том случае, если была отмечена стабильность их «работы» во времени и при заданной температуре. Иногда в качестве параметра стабильности при испытаниях указывается и частота электрического поля.

Характеристики электроизоляторов

Одной из главных характеристик диэлектриков является поверхностное сопротивление. Это сопротивление, которое возникает в момент прохождения тока по поверхности материала. Следующей по значимости характеристикой можно назвать диэлектрическую проницаемость. Как уже говорилось, проницаемость напрямую связана с пробиваемостью целевого материала. И отдельного внимания заслуживают физико-химические характеристики. В их числе отмечают водопоглощаемость, вязкость и кислотность. Водопоглощаемость указывает на степень пористости материала и присутствие в нем водорастворимых элементов. Чем выше это значение, тем выше эффективность материала как диэлектрика. В свою очередь, вязкость характеризуется текучестью, что важно для определения взаимодействия материала с жидкостными или расплавленными диэлектриками. Кислотным числом обычно характеризуются жидкие диэлектрики. Например, основные особенности электроизоляционных материалов сводятся к способности нейтрализовать свободные кислоты, содержащиеся в 1 г материала. Присутствие свободных кислот понижает электроизоляционные качества электроизоляторов.

Газообразные изоляторы

Практически все газообразные электроизоляционные материалы обеспечивают диэлектрическую проницаемость, в коэффициенте равную 1. К плюсам таких изделий можно отнести небольшую долю диэлектрических потерь, хотя и степень пробоя тоже невелика. Как правило, основной газообразной средой с функцией электрического изолятора выступает воздух, дополненный специальными включениями. Но к сегодняшнему дню получил широкое распространение и элегаз, который применяется в качестве диэлектрической основы. Газообразные виды электроизоляционных материалов базируются на гексафториде серы, что обеспечивает более высокую защиту в показателе пробоя, а в некоторых случаях наблюдается и дугогасительная способность. Когда речь идет о сложных условиях эксплуатации целевого объекта защиты, газовая среда может дополняться органическими изоляторами.

Твердые диэлектрики

Традиционно под изоляторами данного типа понимаются такие материалы, как стекло, кварц, фарфор, пластики и резина. Их происхождение может быть натуральным и синтетическим. В тонких слоях изоляторов могут быть повышенные показатели удельного сопротивления и напряжения пробоя – эти значения зависят от диэлектрической проницаемости и электрической прочности структуры. Увеличение разности потенциалов по отношению к твердому или жидкому диэлектрику будет повышать ток, проходящий целевой объект. В итоге это явление способствует формированию вблизи катода положительного пространственного заряда на фоне отрыва электронов. Электрический пробой можно будет рассматривать как результат искажения заряженного поля в структуре самого изолятора. Твердотельные электроизоляционные материалы подвергаются поляризации, поэтому их диэлектрическая постоянная превышает единицу. Также в момент приложения переменных электрических полей поляризация способствует образованию диэлектрических потерь. В этом контексте стоит выделить материалы, которые даже в высокочастотных полях имеют минимальные диэлектрические потери. К таким можно отнести полиэтилен и кварц.

Жидкие диэлектрики

К жидким изоляторам относятся синтетические жидкости, масла, пасты, лаки и смолы. Особенно распространены минеральные масла, являющиеся продуктом нефтяной переработки и представляющие собой комбинацию жидких углеводородов. Они используются в масляных выключателях, небольших трансформаторах, конденсаторах и кабелях. Популярна и жидкая электроизоляция в виде пропитки. Ее часто применяют при подготовке кабелей и тех же конденсаторов к работе. Материал представляет собой бумажную изоляцию, в которой бумага является носителем, а пропитка – активной защитной средой.

Гильзовая электроизоляция

Это материал из группы механических защитных устройств, который обеспечивает внешнюю физическую защиту. Обычно используются гибкие гильзы, которыми защищаются проводники силовых агрегатов, трансформаторы и кабели. По этому же принципу работает традиционная изоляционная лента, задача которой заключается в создании физической преграды. Гильзы также выступают прослойкой, никак не взаимодействующей с источником тока на электрохимическом уровне. Однако среди недостатков этого материала отмечается быстрый износ.

Конденсаторы

Электрическая изоляция является важным условием полноценной работоспособности конденсаторов. В некоторых случая сам конденсатор выступает как диэлектрик в составе сложной электротехнической цепи. Такие приборы имеют разное применение, в том числе выделяется нейтрализация индукционных эффектов в линиях с переменным током, накопление заряда, а также получение токовых импульсов для всевозможных приложений. Для использования конденсатора в качестве изоляционной точки необходимо иметь представление о требуемой емкости. В приборах она рассчитывается исходя из характеристик системы или посредством вычисления размера заряда на обкладке. В самой конструкции для обеспечения защитной функции могут применяться электроизоляционные материалы в виде лаков и масел. В зависимости от типа конденсатора определяется и набор вторичных функций – например, учитывается горючесть, влагостойкость, износостойкость и т.д.

Вакуум как изолятор

Газовая среда при крайне низком давлении может создавать условия, когда газ просто не сможет образовывать заметный ток в межэлектродном зазоре. Такие условия называют изоляционным вакуумом. При столкновении с электронами или положительными ионами, которые вылетают из электродов, ионизация молекул газа под низким давлением происходит очень редко. Так называемый высокий вакуум при условии постоянного напряжения до 20 кВ на поверхности катода может обойтись без пробоя при напряженности поля порядка 5 МВ/см. Если речь идет об аноде, то напряженность должна быть в разы выше. И все же заметное увеличение напряжения способствует тому, что вакуумные электроизоляционные материалы утрачивают свой защитный потенциал. Пробой в данном случае может наступать в результате обмена заряженными частицами в связке катод-анод. Диэлектрики такого типа чаще используются в электронике. Их применяют и в целях ускорения электронов в обычных приборах, и в рентгеновских аппаратах для обеспечения высоковольтных приложений.

Компаунд как основной диэлектрик в радиотехнике

Довольно практичный в использовании и недорогой способ диэлектрической защиты. Компаунд наносится на рабочую зону, после чего застывает, в полной мере обретая свои основные функциональные качества. При этом нельзя сказать, что компаунды – это обязательно твердые электроизоляционные материалы, так как встречаются и разновидности жидкостного типа. Даже в рабочем состоянии они не отвердевают. Также существуют заливочные и пропиточные виды данного материала. Отличительной чертой всех компаундов является полное отсутствие растворителей в составе. Это дает возможность обеспечивать деликатную пропитку сложных электромеханических деталей и аппаратов.

Современные электроизоляционные материалы

К электроизоляторам нового поколения относится широкая группа полимерных материалов. В основном это пленочные изделия, которые обеспечивают эффект диэлектрика путем создания соответствующей оболочки. Пленка производится в формате рулонов, толщина которых варьируется от 5 до 250 мкм. Помимо основных электроизоляционных свойств, такие пленки характеризуются гибкостью, эластичностью, прочностью и стойкостью на разрыв. Удобна в применении и полимерная изоляционная лента, которая имеет толщину 0,2-0,3 мм. Такие материалы проигрывают многим традиционным диэлектрикам лишь в одном качестве – экологической безопасности. Это не самый безобидный материал в плане токсической угрозы, поэтому его используют по большей части в промышленности, хотя бывают и исключения.

Сферы применения электроизоляторов

Практически все сферы, в которых задействуется электропроводка, в том или ином виде применяют и диэлектрические средства. Базовым примером можно назвать кабели, которые получают несколько слоев изоляции – как электрической, так и механической. Приборостроение можно назвать второй по популярности сферой использования данной изоляции. От воздействия токов ограничивают как отдельные детали аппаратной части, так и технологические узлы в электротехнических машинах. В строительстве также востребованы средства изоляции от тока. Например, в прокладке домашней и уличной проводки тоже задействуются электроизоляционные материалы. Применение диэлектриков позволяет сохранить материалы, которые находятся рядом с токопроводящим контуром. В некоторых случаях подобная изоляция себя оправдывает и как средство понижения потерь в напряжении основной линии.

Заключение

Спектр вариантов электрической изоляции довольно широк, что дает возможность целенаправленно подобрать материал специально под конкретные нужды. Например, в быту распространены твердотельные виды электроизоляционных материалов, а также диэлектрики в форме деталей. В промышленности и строительстве могут применяться газовые и жидкостные среды. Коммунальная же сфера охватывает практически весь диапазон электрической изоляции, поскольку условия защиты могут быть очень разными.

Электроизоляционные материалы

С электрическим током шутки, как известно, плохи. Поэтому токопроводящие части электрической цепи стараются надежно предохранить от возможности контакта с человеком. К чему приводит подобный контакт понятно всем, особенно если речь идет о напряжении бытовой сети в 220 Вольт. А если 380 Вольт для трехфазной сети? Для того чтобы избежать неприятных последствий этого и служат изоляционными материалы или говоря по-научному диэлектрики. Их назначение видно из их названия – они выполняют изоляцию находящихся под напряжением частей электрической цепи, то есть защищают от утечек электрического тока. Это утечка может быть направлена как на человека, так и на другие токопроводящие части. Самый простой пример, когда при повреждении изоляция проводов однофазной сети образуется прямой контакт фазного и нулевого провода. В результате происходит короткое замыкание, которое может привести к очень неприятным последствиям.

         Изоляционные материалы, служащие для защиты токопроводящих частей должны обладать определенным набором характеристик, позволяющих им выполнять данную функцию. Наиболее важным является удельное сопротивление материала, так как эта физическая величина характеризует способность препятствовать прохождения через него электрического тока. Чем оно выше, тем лучше данный материал справляется с изоляционными функциями. Важной характеристикой является также напряжение пробоя.

             Пробоем диэлектриков называют состояние, при котором они теряют свои изоляционные свойства, то есть перестают выполнять свои защитные функции. Номинальное рабочее напряжение должно быть 2-4 раза ниже пробойного напряжения. Также важна диэлектрическая проницаемость материала, чем она меньше, тем лучше диэлектрические свойства. Для изоляционных материалов важно, чтобы свои диэлектрические свойства они сохраняли в возможно большем диапазоне параметров окружающей среды таких как температура, влажность, ультрафиолетовое излучение и т.д.

             Изоляционные материалы могут находиться в трех агрегатных состояниях – газообразном, жидком и твердом. При этом газообразные и жидкие диэлектрики находят в основном промышленное применение или используется в готовых изделиях, например, конденсаторах. Вообще видов изоляционных материалов существует великое множество, но для рядового потребителя, осуществляющего простой домашний электромонтаж выбор не так уж велик.

Изоляционные ленты

 

             Пожалуй, нет ни одного человека, который хоть раз в жизни не использовал бы изоленту. Она служит для изоляции электрических проводов при их соединении друг с другом и при ремонте проводов с поврежденной изоляцией.

             На массовом рынке представлены изоленты из двух видов материалов – на тканевой хлопчатобумажной основе (ХБ) и изолента из поливинилхлорида (ПВХ).

             Изолента ХБ производится из хлопчатобумажной ткани типа миткали. При этом на одну или обе стороны наносится специальный состав на резиново-клеевой основе. Данный тип изоленты применяется при температурном диапазоне от -30С до +30С. При этом не допускается его применение в агрессивной среде, так как тканевая основа не выдерживает подобного воздействия.

             Преимуществом данной изоленты является то, что по сравнению с изолентой ПВХ при нагреве электрического провода она твердеет, а не плавится, тем самым предотвращая возникновение оголенного контакта и возникновение короткого замыкания. При низких температурах, например, при электромонтаже на открытом воздухе, она меньше подвержена ломкости и остается липкой, когда ПВХ изолента уже перестает прилипать.  Изолента ХБ бывает двух видов – для повседневного применения и для использования в производственных целях. Они маркируются цифрой 1 или 2, которые означают одностороннюю или двухстороннюю липкость, а также областью применения.

             Изолента ХБ для повседневного применения:

                          1 ШОЛ – односторонняя изолента обычной липкости

                          2 ШОЛ – двусторонняя изолента обычной липкости.

             Изолента ХБ для производственного использования:

                          1 ПОЛ – односторонняя изолента обычной липкости

                          2 ПОЛ – двусторонняя изолента обычной липкости

                          2 ППЛ – двусторонняя изолента повышенной липкости.

             Эта изолента выпускается чаще всего в традиционном черном цвете, роликами различной длины. Также она различается и шириной ролика, которая указывается после марки продукта, например, 1 ШОЛ20 – это лента шириной 20 мм. Напряжение пробоя составляет для изоленты бытового применения 1 кВ, для специальных промышленных марок может доходить и до 6 кВ.

Рисунок 1. Изолента ХБ

             Изолента ПВХ является пленкой из поливинилхлорида, на одну из сторон которой нанесен клеевой состав. Она может эксплуатироваться в широком диапазоне температур окружающей среды от -50°С до +70°С. Но как было уже указано, при отрицательных температурах монтаж с использованием пленки ПВХ будет затруднен, так как она становится нелипкой, ломкой и теряет прочность при растяжении. Она обладает более высоким диэлектрическими характеристиками и выдерживает эксплуатацию в агрессивных средах. Изделия выпускаются с различными толщинами в основном от 150 до 450 мкм, которые зависят от вида и конкретного производителя, в рулонах различной длины и ширины. Диапазон, представленных на рынке ширин довольно широк - 10мм, 15мм, 19мм, 20мм, 30мм, 40мм и 50мм. Цветовая гамма тоже достаточно разнообразна, изолента выпускается в следующих цветах: белый, черный, желтый, синий, голубой, красный, зеленый, желто-зеленый.

             При покупке изоленты ПВХ следует иметь в виду, что чем меньше толщина изоленты, тем хуже диэлектрические свойства изделия. Но тут, как говорится, палка о двух концах, слишком толстой изолентой работать труднее и добиться надежного контакта требует определенных навыков. Естественно, производитель должен гарантировать высокое качество клеевого покрытия, в противном случае изделие просто не будет выполнять свои функции. Толщина клеевого покрытия обычно составляет 20 мкм. Напряжение пробоя для изоленты ПВХ толщиной 150 мкм составляет 6 кВ.

Рисунок 2. Изолента ПВХ

Термоусаживаемые трубки (ТУТ)

 

             Практически каждому, кто занимался электромонтажом, конечно, известен старый добрый кембрик, незаменимый, когда производится протяжка провода и он подвергается изгибу и повороту. Любой электрик скажет вам, что в таких местах требуется дополнительная защита и изоляция. Но технологии не стоят на месте и на смену кембрикам приходят более функциональные и надежные изделия – это термоусаживаемые или термоусадочные трубки (ТУТ). Но это не единственное назначение ТУТ, они с успехом применяются и для изолирования соединения проводов и выдерживают напряжение до 600 В.

             Область применения.

             Если кратко обозначить области применения ТУТ, то к основным относятся:

                          - восстановление поврежденной изоляции

                          - создание герметичного соединения там, где это требуется

                          - изолирование места соединения проводов

                          - использование для информационной маркировки проводов

                          - использование в качестве декоративного, защитного и противокоррозионного покрытия.

             Термоусаживаемые трубки изготавливают из экологичного материала, который называется полиолефин. Он не горюч, не поддерживает горение и не воспламеняется, более того в состав материала входят вещества, которые подавляют горение, а также имеет широкий температурный диапазон использования от -60° до +80°С. Данный материал обладает высокой химической устойчивостью к агрессивным средам.

             Как же работают термоусаживаемые трубки? Надо сказать, что принцип их использования довольно прост и основан на свойстве данного материала уменьшать диаметр трубки под действием температуры. При нагревании трубка как бы обжимает провод со всех сторон и плотно прилегает к нему. В результате получается практически монолитное соединение. Лучше всего нагрев производить строительным феном при температуре 120 - 140° С. Как правило диаметр трубки меняется при нагреве в два, три или четыре раза, что находит отражение в маркировке ТУТ, например, 10,0/5,0 мм – означает, что изначальный диаметр трубки составляет 10 мм, а после нагрева – 5 мм. Эта величина изменения диаметра называется коэффициент усадки.

             Там, где требуется высокая степень герметизации используются специальные трубки с клеевым покрытием, после завершения процесса монтажа образуется практически полностью герметичное соединение. Следует заменить, что ТУТ несут в себе еще и определенную эстетическу

Электроизоляционные материалы и их классификация. Волокнистые электроизоляционные материалы

Некоторые материалы, используемые в электрических приборах и схемах электроснабжения, обладают диэлектрическими свойствами, то есть имеют большое сопротивление току. Эта способность позволяет им не пропускать ток, а поэтому их используют для создания изоляции токоведущих частей. Электроизоляционные материалы предназначены не только для разделения токоведущих частей, но и для создания защиты от опасного воздействия электрического тока. Например, шнуры питания электрических приборов покрыты изоляцией.

Электроизоляционные материалы и их применение

Электроизоляционные материалы широко применяются в промышленности, радио- и приборостроении, развитии электрических сетей. Нормальная работа электрического прибора или безопасность схемы электроснабжения во многом зависит от используемых диэлектриков. Некоторые параметры материала, предназначенного для электрической изоляции, определяют его качество и возможности.

Применение изоляционных материалов обусловлено правилами безопасности. Целостность изоляции является залогом безопасной работы с электрическим током. Весьма опасно использовать приборы с поврежденной изоляцией. Даже незначительный электрический ток может оказать воздействие на организм человека.

Свойства диэлектриков

Электроизоляционные материалы должны иметь определенные свойства, чтобы выполнять свои функции. Главным отличием диэлектриков от проводников является большая величина удельного объемного сопротивления (109–1020 ом·см). Электрическая проводимость проводников в сравнении с диэлектриками раз в 15 раз больше. Это связано с тем, что изоляторы по своей природе имеют в несколько раз меньше свободных ионов и электронов, которые обеспечивают токопроводимость материала. Но при нагревании материала их становится больше, что способствует увеличению токопроводимости.

Различают активные и пассивные свойства диэлектриков. Для изоляционных материалов наиболее важны пассивные свойства. Диэлектрическая проницаемость материала должна быть как можно меньшей. Это позволяет изолятору не вносить в схему паразитные емкости. Для материала, который используется в качестве диэлектрика конденсатора, диэлектрическая проницаемость должна быть, наоборот, как можно большей.

Параметры изоляции

К основным параметрам электроизоляции относят электрическую прочность, удельное электрическое сопротивление, относительную диэлектрическую проницаемость, угол диэлектрических потерь. При оценке электроизоляционных свойств материала учитывается также зависимость перечисленных характеристик от величин электрического тока и напряжения.

Электроизоляционные изделия и материалы обладают большей величиной электрической прочности в сравнении с проводниками и полупроводниками. Важна также для диэлектрика стабильность удельных величин при нагревании, повышении напряжении и других изменениях.

Классификация диэлектрических материалов

В зависимости от мощности тока, проходящего по проводнику, используют разные типы изоляции, которые отличаются своими возможностями.

По каким же параметрам делят электроизоляционные материалы? Классификация диэлектриков основана на их агрегатном состоянии (твердые, жидкие и газообразные) и происхождению (органические: естественные и синтетические, неорганические: природные и искусственные). Наиболее распространен тип твердых диэлектриков, которые можно увидеть на шнурах бытовой техники или любых других электрических приборов.

Твердые и жидкие диэлектрики, в свою очередь, делятся на подгруппы. К твердым диэлектрикам относятся лакоткани, слоистые пластики и различные виды слюды. Воски, масла и сжиженные газы представляют собой жидкие электроизоляционные материалы. Специальные газообразные диэлектрики используются намного реже. К этому типу также относится естественный электрический изолятор – воздух. Его использование обусловлено не только характеристиками воздуха, которые делают его прекрасным диэлектриком, но и его экономичностью. Применение воздуха в качестве изоляции не требует дополнительных материальных затрат.

Твердые диэлектрики

Твердые электроизоляционные материалы – наиболее широкий класс диэлектриков, которые применяются в разных областях. Они имеют различные химические свойства, а величина диэлектрической проницаемости колеблется от 1 до 50000.

Твердые диэлектрики делятся на неполярные, полярные и сегнетоэлектрики. Их главные отличия состоят в механизмах поляризации. Этот класс изоляции обладает такими свойствами, как химическая стойкость, трекингостойкость, дендритостойкость. Химическая стойкость выражается в способности противостоять влиянию различным агрессивным средам (кислота, щелочь и т.д.). Трегингостойкость определяет возможность противостоять воздействию электрической дуги, а дендритостойкость – образованию дендритов.

Твердые диэлектрики применяются в различных сферах энергетики. Например, керамические электроизоляционные материалы наиболее часто используются в качестве линейных и проходных изоляторов на подстанциях. В качестве изоляции электрических приборов используют бумагу, полимеры, стеклотекстолит. Для машин и аппаратов чаще всего применяют лаки, картон, компаунд.

Для применения в различных условиях эксплуатации изоляции придают некоторые особые свойства путем сочетания разных материалов: нагревостойкость, влагостойкость, радиационная стойкость и морозостойкость. Нагревостойкие изоляторы способны выдерживать температуры до 700 °С, к ним относятся стекла и материалы на их основе, органосилиты и некоторые полимеры. Влагостойким и тропикостойким материалом является фторопласт, который негигроскопичен и гидрофобен.

Изоляция, стойкая к радиации используется в приборах с атомными элементами. К ней относятся неорганические пленки, некоторые виды полимеров, стеклотекстолит и материалы на основе слюды. Морозостойкими считаются изоляции, которые не теряют своих свойств при температуре до -90 °С. Особые требования предъявляются к изоляции, предназначенной для приборов, работающих в космосе или условиях вакуума. Для этих целей применяются вакуумно-плотные материалы, к которым относится специальная керамика.

Жидкие диэлектрики

Жидкие электроизоляционные материалы часто применяются в электрических машинах и аппаратах. В трансформаторе роль изоляции играет масло. К жидким диэлектрикам также относят сжиженные газы, ненасыщенные вазелиновые и парафиновые масла, полиорганосилоксаны, дистиллированная вода (очищенная от солей и примесей).

Основными характеристиками жидких диэлектриков являются диэлектрическая проницаемость, электрическая прочность и электропроводность. Также электрические параметры диэлектриков во многом зависят от степени их очистки. Твердые примеси могут увеличивать электропроводность жидкостей за счет разрастания свободных ионов и электронов. Очистка жидкостей путем дистилляции, ионным обменом и т.д. приводит к возрастанию величины электрической прочности материала, тем самым снижая его электропроводность.

Жидкие диэлектрики разделяют на три группы:

  • нефтяные масла;
  • растительные масла;
  • синтетические жидкости.

Наиболее часто используются нефтяные масла, такие как трансформаторное, кабельное и конденсаторное. Синтетические жидкости (кремнийорганические и фторорганические соединения) также используются в аппаратостроении. Например, кремнийорганические соединения морозоустойчивы и гигроскопичны, поэтому применяются в качестве изолятора в небольших трансформаторах, но их стоимость выше цены нефтяных масел.

Растительные масла практически не используются в качестве изоляционных материалов в электроизоляционной технике. К ним относятся касторовое, льняное, конопляное и тунговое масло. Эти материалы представляют собой слабополярные диэлектрики и используются в основном для пропитки бумажных конденсаторов и в качестве пленкообразующего вещества в электроизоляционных лаках, красках, эмалях.

Газообразные диэлектрики

Наиболее распространенными газообразными диэлектриками являются воздух, азот, водород и элегаз. Электроизоляционные газы делятся на естественные и искусственные. К естественным относится воздух, которые применяется в качестве изоляции между токоведущими частями линий электропередач и электрических машин. В качестве изолятора воздух имеет недостатки, которые делает невозможным его использование в герметичных устройствах. Из-за наличия высокой концентрации кислорода воздух является окислителем, и в неоднородных полях проявляется низкая электрическая прочность воздуха.

В силовых трансформаторах и высоковольтных кабелях в качестве изоляции используют азот. Водород, кроме электроизоляционного материала, также представляет собой принудительное охлаждение, поэтому часто используется в электрических машинах. В герметизированных установках чаще всего применяют элегаз. Заполнение элегазом делает устройство взрывобезопасным. Применяется в высоковольтных выключателях благодаря своим дугогасящим свойствам.

Органические диэлектрики

Органические диэлектрические материалы делятся на естественные и синтетические. Естественные органические диэлектрики в настоящее время используются крайне редко, так все больше расширяется производство синтетических, тем самым снижая их стоимость.

К естественным органическим диэлектрикам относят целлюлозу, каучук, парафин и растительные масла (касторовое масло). Большую часть синтетических органических диэлектриков представляют различные пластмассы и эластомеры, часто используемые в электрических бытовых приборах и другой технике.

Неорганические диэлектрики

Неорганические диэлектрические материалы делят на природные и искусственные. Наиболее распространенным из природных материалов является слюда, которая обладает химической и термической стойкостью. Также для электроизоляции используют флогопит и мусковит.

К искусственным неорганическим диэлектрикам относят стекло и материалы на его основе, а также фарфор и керамику. В зависимости от области применения искусственному диэлектрику можно придать особые свойства. Например, для проходных изоляторов используют полевошпатовую керамику, которая имеет высокий тангенс диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые материалы часто применяются для изоляции в электрических аппаратах и машинах. К ним относят материалы растительного происхождения (каучук, целлюлозу, ткани), синтетический текстиль (нейлон, капрон), а также материалы из полистирола, полиамида и т. д.

Органические волокнистые материалы обладают высокой гигроскопичностью, поэтому редко используются без специальной пропитки.

В последнее время взамен органических материалов применяют синтетические волокнистые изоляции, которые обладают более высоким уровнем нагревостойкости. К ним относится стеклянное волокно и асбест. Стеклянное волокно пропитывают различными лаками и смолами для повышения его гидрофобных свойств. Асбестовое волокно обладает малой механичной прочностью, поэтому нередко в него добавляют хлопчатобумажное волокно.

Источник – fb.ru

Электроизоляционные материалы и их классификация. Волокнистые электроизоляционные материалы

Некоторые материалы, используемые в электрических приборах и схемах электроснабжения, обладают диэлектрическими свойствами, то есть имеют большое сопротивление току. Эта способность позволяет им не пропускать ток, а поэтому их используют для создания изоляции токоведущих частей. Электроизоляционные материалы предназначены не только для разделения токоведущих частей, но и для создания защиты от опасного воздействия электрического тока. Например, шнуры питания электрических приборов покрыты изоляцией.

Электроизоляционные материалы и их применение

Электроизоляционные материалы широко применяются в промышленности, радио- и приборостроении, развитии электрических сетей. Нормальная работа электрического прибора или безопасность схемы электроснабжения во многом зависит от используемых диэлектриков. Некоторые параметры материала, предназначенного для электрической изоляции, определяют его качество и возможности.

Применение изоляционных материалов обусловлено правилами безопасности. Целостность изоляции является залогом безопасной работы с электрическим током. Весьма опасно использовать приборы с поврежденной изоляцией. Даже незначительный электрический ток может оказать воздействие на организм человека.

Свойства диэлектриков

Электроизоляционные материалы должны иметь определенные свойства, чтобы выполнять свои функции. Главным отличием диэлектриков от проводников является большая величина удельного объемного сопротивления (109–1020 ом·см). Электрическая проводимость проводников в сравнении с диэлектриками раз в 15 раз больше. Это связано с тем, что изоляторы по своей природе имеют в несколько раз меньше свободных ионов и электронов, которые обеспечивают токопроводимость материала. Но при нагревании материала их становится больше, что способствует увеличению токопроводимости.

Различают активные и пассивные свойства диэлектриков. Для изоляционных материалов наиболее важны пассивные свойства. Диэлектрическая проницаемость материала должна быть как можно меньшей. Это позволяет изолятору не вносить в схему паразитные емкости. Для материала, который используется в качестве диэлектрика конденсатора, диэлектрическая проницаемость должна быть, наоборот, как можно большей.

Параметры изоляции

К основным параметрам электроизоляции относят электрическую прочность, удельное электрическое сопротивление, относительную диэлектрическую проницаемость, угол диэлектрических потерь. При оценке электроизоляционных свойств материала учитывается также зависимость перечисленных характеристик от величин электрического тока и напряжения.

Электроизоляционные изделия и материалы обладают большей величиной электрической прочности в сравнении с проводниками и полупроводниками. Важна также для диэлектрика стабильность удельных величин при нагревании, повышении напряжении и других изменениях.

Классификация диэлектрических материалов

В зависимости от мощности тока, проходящего по проводнику, используют разные типы изоляции, которые отличаются своими возможностями.

По каким же параметрам делят электроизоляционные материалы? Классификация диэлектриков основана на их агрегатном состоянии (твердые, жидкие и газообразные) и происхождению (органические: естественные и синтетические, неорганические: природные и искусственные). Наиболее распространен тип твердых диэлектриков, которые можно увидеть на шнурах бытовой техники или любых других электрических приборов.

Твердые и жидкие диэлектрики, в свою очередь, делятся на подгруппы. К твердым диэлектрикам относятся лакоткани, слоистые пластики и различные виды слюды. Воски, масла и сжиженные газы представляют собой жидкие электроизоляционные материалы. Специальные газообразные диэлектрики используются намного реже. К этому типу также относится естественный электрический изолятор – воздух. Его использование обусловлено не только характеристиками воздуха, которые делают его прекрасным диэлектриком, но и его экономичностью. Применение воздуха в качестве изоляции не требует дополнительных материальных затрат.

Твердые диэлектрики

Твердые электроизоляционные материалы – наиболее широкий класс диэлектриков, которые применяются в разных областях. Они имеют различные химические свойства, а величина диэлектрической проницаемости колеблется от 1 до 50000.

Твердые диэлектрики делятся на неполярные, полярные и сегнетоэлектрики. Их главные отличия состоят в механизмах поляризации. Этот класс изоляции обладает такими свойствами, как химическая стойкость, трекингостойкость, дендритостойкость. Химическая стойкость выражается в способности противостоять влиянию различным агрессивным средам (кислота, щелочь и т.д.). Трегингостойкость определяет возможность противостоять воздействию электрической дуги, а дендритостойкость – образованию дендритов.

Твердые диэлектрики применяются в различных сферах энергетики. Например, керамические электроизоляционные материалы наиболее часто используются в качестве линейных и проходных изоляторов на подстанциях. В качестве изоляции электрических приборов используют бумагу, полимеры, стеклотекстолит. Для машин и аппаратов чаще всего применяют лаки, картон, компаунд.

Для применения в различных условиях эксплуатации изоляции придают некоторые особые свойства путем сочетания разных материалов: нагревостойкость, влагостойкость, радиационная стойкость и морозостойкость. Нагревостойкие изоляторы способны выдерживать температуры до 700 °С, к ним относятся стекла и материалы на их основе, органосилиты и некоторые полимеры. Влагостойким и тропикостойким материалом является фторопласт, который негигроскопичен и гидрофобен.

Изоляция, стойкая к радиации используется в приборах с атомными элементами. К ней относятся неорганические пленки, некоторые виды полимеров, стеклотекстолит и материалы на основе слюды. Морозостойкими считаются изоляции, которые не теряют своих свойств при температуре до -90 °С. Особые требования предъявляются к изоляции, предназначенной для приборов, работающих в космосе или условиях вакуума. Для этих целей применяются вакуумно-плотные материалы, к которым относится специальная керамика.

Жидкие диэлектрики

Жидкие электроизоляционные материалы часто применяются в электрических машинах и аппаратах. В трансформаторе роль изоляции играет масло. К жидким диэлектрикам также относят сжиженные газы, ненасыщенные вазелиновые и парафиновые масла, полиорганосилоксаны, дистиллированная вода (очищенная от солей и примесей).

Основными характеристиками жидких диэлектриков являются диэлектрическая проницаемость, электрическая прочность и электропроводность. Также электрические параметры диэлектриков во многом зависят от степени их очистки. Твердые примеси могут увеличивать электропроводность жидкостей за счет разрастания свободных ионов и электронов. Очистка жидкостей путем дистилляции, ионным обменом и т.д. приводит к возрастанию величины электрической прочности материала, тем самым снижая его электропроводность.

Жидкие диэлектрики разделяют на три группы:

  • нефтяные масла;
  • растительные масла;
  • синтетические жидкости.

Наиболее часто используются нефтяные масла, такие как трансформаторное, кабельное и конденсаторное. Синтетические жидкости (кремнийорганические и фторорганические соединения) также используются в аппаратостроении. Например, кремнийорганические соединения морозоустойчивы и гигроскопичны, поэтому применяются в качестве изолятора в небольших трансформаторах, но их стоимость выше цены нефтяных масел.

Растительные масла практически не используются в качестве изоляционных материалов в электроизоляционной технике. К ним относятся касторовое, льняное, конопляное и тунговое масло. Эти материалы представляют собой слабополярные диэлектрики и используются в основном для пропитки бумажных конденсаторов и в качестве пленкообразующего вещества в электроизоляционных лаках, красках, эмалях.

Газообразные диэлектрики

Наиболее распространенными газообразными диэлектриками являются воздух, азот, водород и элегаз. Электроизоляционные газы делятся на естественные и искусственные. К естественным относится воздух, которые применяется в качестве изоляции между токоведущими частями линий электропередач и электрических машин. В качестве изолятора воздух имеет недостатки, которые делает невозможным его использование в герметичных устройствах. Из-за наличия высокой концентрации кислорода воздух является окислителем, и в неоднородных полях проявляется низкая электрическая прочность воздуха.

В силовых трансформаторах и высоковольтных кабелях в качестве изоляции используют азот. Водород, кроме электроизоляционного материала, также представляет собой принудительное охлаждение, поэтому часто используется в электрических машинах. В герметизированных установках чаще всего применяют элегаз. Заполнение элегазом делает устройство взрывобезопасным. Применяется в высоковольтных выключателях благодаря своим дугогасящим свойствам.

Органические диэлектрики

Органические диэлектрические материалы делятся на естественные и синтетические. Естественные органические диэлектрики в настоящее время используются крайне редко, так все больше расширяется производство синтетических, тем самым снижая их стоимость.

К естественным органическим диэлектрикам относят целлюлозу, каучук, парафин и растительные масла (касторовое масло). Большую часть синтетических органических диэлектриков представляют различные пластмассы и эластомеры, часто используемые в электрических бытовых приборах и другой технике.

Неорганические диэлектрики

Неорганические диэлектрические материалы делят на природные и искусственные. Наиболее распространенным из природных материалов является слюда, которая обладает химической и термической стойкостью. Также для электроизоляции используют флогопит и мусковит.

К искусственным неорганическим диэлектрикам относят стекло и материалы на его основе, а также фарфор и керамику. В зависимости от области применения искусственному диэлектрику можно придать особые свойства. Например, для проходных изоляторов используют полевошпатовую керамику, которая имеет высокий тангенс диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые материалы часто применяются для изоляции в электрических аппаратах и машинах. К ним относят материалы растительного происхождения (каучук, целлюлозу, ткани), синтетический текстиль (нейлон, капрон), а также материалы из полистирола, полиамида и т.д.

Органические волокнистые материалы обладают высокой гигроскопичностью, поэтому редко используются без специальной пропитки.

В последнее время взамен органических материалов применяют синтетические волокнистые изоляции, которые обладают более высоким уровнем нагревостойкости. К ним относится стеклянное волокно и асбест. Стеклянное волокно пропитывают различными лаками и смолами для повышения его гидрофобных свойств. Асбестовое волокно обладает малой механичной прочностью, поэтому нередко в него добавляют хлопчатобумажное волокно.

Изоляционный материал: классификация и ее применение

Электроизоляционный материал / изоляционный материал используется для препятствования прохождению тока. Он образует ионные связи, и материалы с низкой проводимостью и высоким удельным сопротивлением доступны в твердой, жидкой, газообразной форме, например, пластик, используемый для свечей, изоляционное масло, используемое в трансформаторе, и т. Д. Эти материалы имеют очень высокое сопротивление, поэтому поток электрический ток требует чрезвычайно высокого напряжения, такого как килограммы или мегавольты, чтобы передать им ток в несколько миллиампер.Изоляторы используются в основном для хранения, а также во всем бытовом и коммерческом электрическом оборудовании для изоляции проводника от земли.

Что такое изоляционный материал / электроизоляционный материал?

Электроизоляционный материал / изоляционные материалы - это материалы, препятствующие передаче тепла, электрического тока или шума. Все изоляционные материалы имеют отрицательный температурный коэффициент сопротивления, поэтому удельное сопротивление уменьшается с повышением температуры.Функция изолятора очень важна, без которой никакая электрическая машина не может работать, большая часть поломок в области электротехники происходит из-за нарушения изоляции. Значение изоляционных материалов постоянно возрастает с каждым днем, так как на рынке доступно бесчисленное количество типов изоляторов. Выбор правильного типа изоляционного материала очень важен, потому что срок службы оборудования зависит от типа используемого материала.


Основы изоляционного материала

Изоляторы - это материалы, у которых валентные электроны восемь или ближе к восьми. Когда валентных электронов восемь, очевидно, что атом находится в стабильном состоянии, и они обладают очень высоким сопротивлением, так как отсутствуют свободные электроны, а также больше запрещенная зона между проводимостью и валентной зоной. Атомная структура изоляционного материала неона показана на рисунке ниже.

Атомная структура неонового изоляционного материала

Как показано на приведенном выше рисунке, этот атом имеет восемь электронов на внешней орбите, следовательно, они стабильны, и его можно рассматривать как изолятор.Атомная структура фтора состоит из семи электронов на их внешней орбите в валентном электроне. Атомная структура изоляционного материала фтора показана на рисунке ниже.

Атомная структура фтора

Атомы, подобные кислороду, которые имеют только шесть электронов в валентном электроне, их можно также классифицировать как изолятор, но изолирующие свойства кислорода ниже, чем у фтора и неона.

Атомная структура кислорода

Атомы, имеющие восемь электронов и семь электронов на внешней орбите, ведут себя как хороший изолятор по сравнению с атомами, имеющими шесть валентных электронов.


Что такое стеклянный изолятор?

При высоких температурах стеклянные изоляторы конструируются или производятся путем смешивания различных материалов, включая кварц и порошок извести, а затем их охлаждают в форме. Главный недостаток стеклянного изолятора заключается в том, что по сравнению с другими типами изоляторов стеклянный изолятор легко обнаруживает загрязнения, а на поверхности стеклянного изолятора легко отводится влага.

Свойства

Стеклянный изолятор имеет следующие свойства:

  • Диэлектрическая прочность: Приблизительное значение диэлектрической прочности составляет 140 кВ / см.
  • Прочность на сжатие: Приблизительное значение прочности на сжатие составляет 10 000 кг / см².
  • Предел прочности на разрыв: Приблизительное значение прочности на разрыв составляет 35 000 кг / см².

Преимущества

Преимущества стеклянного изолятора

  • По сравнению с фарфором электрическая прочность очень высока в стеклянном изоляторе
  • Высокое сопротивление
  • Прочность на растяжение выше фарфора
  • Он дешевле фарфорового изолятора
  • Меньше затрат

Что такое полимерный изолятор?

Полимерный или полимерный изолятор также известен как композитный изолятор.Это легкий изоляционный материал, обладающий высокой механической прочностью. Недостатком полимерного изолятора является нежелательный зазор между атмосферным навесом и сердечником, в который может попасть влага.

Свойства

Полимерный или полимерный изолятор обладает превосходными свойствами, такими как гидрофобность, легкий вес и погодостойкость.

Преимущества

Преимущества полимерного изолятора

  • По сравнению с фарфором и стеклянным изолятором полимерный изолятор очень легкий
  • Стоимость монтажа низкая
  • Прочность на растяжение выше, чем у фарфора
  • Лучшая производительность

Что такое фарфоровый изолятор?

Фарфоровый изолятор представляет собой изоляционный материал из силиката алюминия.В настоящее время из этого материала изготавливают изолятор потолка. Недостаток напряжения и плохая ударопрочность - недостатки фарфорового изолятора. Фарфор еще можно назвать керамическим. Применения этого изолятора: распределительные линии и линии передачи, изоляторы, вводы трансформаторов, блоки предохранителей, вилки и розетки.

Свойства

Свойства фарфорового изолятора:

  • Диэлектрическая прочность: Приблизительное значение диэлектрической прочности составляет 60 кВ / см.
  • Прочность на сжатие: Приблизительное значение прочности на сжатие составляет 70 000 кг / см².
  • Предел прочности на разрыв: Приблизительное значение прочности на разрыв составляет 500 кг / см².

Преимущества

Преимущества фарфорового изолятора

  • По сравнению со стеклянным изолятором механическая прочность фарфорового изолятора очень высока
  • Ток утечки низкий
  • Он меньше подвержен влиянию температуры
  • Длительный срок службы
  • Легко для поддержания
  • Высокая гибкость
  • Высокая надежность

Свойства изоляционного материала

Все изоляторы при использовании должны вести себя не только как изолятор в широком диапазоне электрического напряжения, но и должны быть прочными механически.Они не должны подвергаться воздействию тепла, атмосферы, химического воздействия и не должны деформироваться из-за старения. Поэтому перед выбором изоляционного материала очень важно знать его различные свойства и их влияние на изоляцию. К различным свойствам изоляционных материалов относятся электрические, визуальные, механические, термические и химические свойства.

Электрические свойства

Электрические свойства изоляционных материалов делятся на два типа: изоляционное сопротивление и электрическая прочность.Изоляционное сопротивление снова подразделяется на два типа: объемное сопротивление и поверхностное сопротивление. Факторами, влияющими на сопротивление изоляции, являются температура, старение, приложенное напряжение и влажность, а факторами, влияющими на диэлектрическую прочность, являются температура и влажность.

Визуальные свойства

Визуальные свойства изоляционного материала - это внешний вид, цвет и его кристалличность.

Механические свойства

Некоторые из механических свойств, которые необходимо учитывать при выборе изоляционного материала, включают растяжение и сжатие, сопротивление истиранию, разрыву, сдвигу и удару, вязкость, пористость, растворимость, влагопоглощение, обрабатываемость и пластичность.

Тепловые свойства

Тепловые свойства изоляционного материала включают температуру плавления, вспышку, летучесть, теплопроводность, тепловое расширение и термостойкость.

Химические свойства

Различные химические свойства изоляционного материала включают стойкость к внешним химическим воздействиям, воздействиям на другие материалы, химическим изменениям материала, гигроскопичности и старению.

Классификация изоляционных материалов

Классификация изоляционных материалов основана на термической классификации, физической классификации, структурной, химической классификации и процессе производства.

Термическая классификация

Термически изоляторы подразделяются на семь типов или семь классов: класс Y, класс A, класс E, класс B, класс F, класс H и класс C.

Class-Y

Предельная температура для класса Y составляет 900 C, а материалы, подпадающие под класс Y, включают хлопок, бумагу, шелк и аналогичные органические материалы.

Класс-A

Предельная температура класса A составляет 1050 ° C, а материалы, относящиеся к классу A, включают пропитанную бумагу, шелк, полиамид, хлопок и смолы.

Class-E

Предельная температура класса E составляет 1200 C, а материалы, подпадающие под класс E, - это эмалированная изоляция проводов на основе порошковых пластмасс, поливинилэпоксидных смол и т.д.

Class-B

The class -B предельная температура составляет 1300 ° C, а материалы относятся к классу-B и представляют собой неорганические материалы, пропитанные лаком.

Класс-F

Предельная температура класса F составляет 1550 ° C, а материалы, относящиеся к классу F, - это слюда, полиэфирно-эпоксидное покрытие, покрытое лаком с высокой термостойкостью.

Class-H

Предельная температура класса H составляет 1800 C, а материалы, подпадающие под класс H, представляют собой композитные материалы на слюде, стекле, волокне и т. Д.

Class-C

Предельная температура класса C составляет > 1800 C и материалы относятся к классу C: стекло, слюда, кварц, керамика, тефлон и т. Д.

Физическая классификация изоляционных материалов

Физическая классификация изоляционных материалов подразделяется на три типа: твердые, жидкие и газообразный.Физическая классификация изоляторов показана на рисунке ниже.

Физическая классификация изоляционных материалов

К твердым изоляционным материалам относятся волокнистые, керамические, слюдяные, стеклянные, резиновые и смолистые. Жидкие изоляционные материалы - это минеральные масла, синтетические масла, трансформаторные масла и прочие масла. Газообразные изоляционные материалы - воздух, водород, азот и гексафторид серы.

Структурная классификация

По структурной классификации изоляционный материал подразделяется на два типа: целлюлозный и волокнистый.

Химическая классификация

По химической классификации изоляционные материалы подразделяются на два типа: органические и неорганические.

Процесс производства

Процесс производства подразделяется на два типа: натуральный и синтетический.

Некоторые из изоляционных материалов: стекловолокно, минеральная вата, целлюлоза, натуральные волокна, полистирол, полиизоцианурат, полиуретан, изоляционные покрытия, фенольная пена, карбамидоформальдегидная пена и т. Д.

Области применения изоляционного материала

Области применения изоляционного материала:

  • Кабели и линии передачи
  • Электронные системы
  • Энергетические системы
  • Бытовые переносные приборы
  • Изоляционная лента для электрических кабелей
  • Средства индивидуальной защиты
  • Электрооборудование резиновые коврики

FAQs

1). Какие бывают общие изоляционные материалы?

Некоторые из распространенных изоляционных материалов, таких как керамика, стекло, тефлон, силикон и т. Д.

2). Какие материалы используются для изоляции проводов?

Одними из лучших хороших электроизоляционных материалов являются стекло, бумага, тефлон, ПВХ, лак и резина.

3). Какие обычно используются теплоизоляционные материалы?

Обычными теплоизоляционными материалами являются минеральная вата, стекловолокно, полистирол, целлюлоза, пенополиуретан и т. Д.

4). Каковы области применения изоляционных материалов?

Области применения изоляционного материала: электрические резиновые маты, силовые и электронные системы, кабели и линии передачи и т. Д.

5). Какое значение имеют изоляционные материалы?

Выбор правильного типа изоляционного материала очень важен, потому что срок службы оборудования зависит от типа используемого материала.

В этой статье рассматриваются изоляционные материалы / электроизоляционные материалы, классификация изоляционных материалов, области применения, преимущества и свойства стеклянной изоляции, фарфорового изолятора и полимерного или полимерного изолятора, свойства изоляционных материалов.Вот вам вопрос, какие изоляционные материалы используются в доме?

.

Изоляционные материалы | Министерство энергетики

Полиуретан - это вспененный изоляционный материал, в ячейках которого содержится газ с низкой проводимостью. Изоляция из пенополиуретана доступна в формулах с закрытыми и открытыми ячейками. В пене с закрытыми порами ячейки с высокой плотностью закрываются и заполняются газом, который помогает пене расширяться и заполнять пространства вокруг нее. Ячейки пенопласта с открытыми порами не такие плотные и заполнены воздухом, что придает изоляции губчатую текстуру и более низкое значение R.

Подобно пенополиизо, R-значение полиуретановой изоляции с закрытыми порами может со временем падать, поскольку часть газа с низкой проводимостью уходит, а воздух заменяет его в результате явления, известного как термический дрейф или старение. Наибольший тепловой дрейф происходит в течение первых двух лет после изготовления изоляционного материала, после чего значение R остается неизменным, если только пена не повреждена.

Фольга и пластмассовые покрытия на жестких пенополиуретановых панелях могут помочь стабилизировать R-значение, замедляя тепловой дрейф.Светоотражающая пленка, если она установлена ​​правильно и обращена к открытому пространству, также может действовать как лучистый барьер. В зависимости от размера и ориентации воздушного пространства это может добавить еще один R-2 к общему тепловому сопротивлению.

Полиуретановая изоляция доступна в виде вспененного жидкого вспененного материала и жесткого пенопласта. Из него также могут быть изготовлены ламинированные изоляционные панели с различными покрытиями.

Нанесение полиуретановой изоляции распылением или вспенением на месте обычно дешевле, чем установка пенопластов, и эти приложения обычно работают лучше, потому что жидкая пена формируется на всех поверхностях.Вся производимая сегодня изоляция из пенополиуретана с закрытыми порами производится с использованием газа, не содержащего ГХФУ (гидрохлорфторуглерод), в качестве вспенивающего агента.

Пенополиуретан низкой плотности с открытыми ячейками использует воздух в качестве вспенивателя и имеет значение R, которое не меняется со временем. Эти пены похожи на обычные пенополиуретаны, но более гибкие. Некоторые сорта с низкой плотностью используют в качестве пенообразователя диоксид углерода (CO2).

Пена низкой плотности распыляется в открытые полости стенок и быстро расширяется, запечатывая и заполняя полость.Также доступна медленно расширяющаяся пена, которая предназначена для полостей в существующих домах. Жидкая пена расширяется очень медленно, что снижает вероятность повреждения стены из-за чрезмерного расширения. Пена проницаема для водяного пара, остается эластичной и устойчива к впитыванию влаги. Он обеспечивает хорошую герметичность, огнестойкость и не поддерживает пламя.

Также доступны жидкие спрей-пены на основе сои. Эти продукты могут применяться с тем же оборудованием, что и для пенополиуретанов на нефтяной основе.

Некоторые производители используют полиуретан в качестве изоляционного материала в конструкционных изоляционных панелях (СИП). Для изготовления СИП можно использовать пенопласт или жидкую пену. Жидкая пена может быть впрыснута между двумя деревянными обшивками под значительным давлением, и после затвердевания пена создает прочную связь между пеной и обшивкой. Стеновые панели из полиуретана обычно имеют толщину 3,5 дюйма (89 мм). Толщина потолочных панелей составляет до 7,5 дюймов (190 мм). Эти панели, хотя и более дорогие, более устойчивы к возгоранию и диффузии водяного пара, чем EPS.Они также изолируют на 30-40% лучше при заданной толщине.

.

изоляционных материалов, из чего они сделаны и для чего они предназначены?

Стандарт IEEE для вентилируемых силовых трансформаторов сухого типа, 501 кВА и более, трехфазных, с высоким напряжением от 34,5 кВ до 601 В и низким напряжением от 208Y / 120 В до 4160 В, охватывающий общие требования. Действующий стандарт был обновлен в 2008 году.

Этот стандарт предназначен для определения характеристик, относящихся к производительности, ограниченной электрической и механической взаимозаменяемости и безопасности описываемого оборудования, а также для помощи в правильном выборе такого оборудования.Конкретные комбинации номинальных значений описаны в диапазоне от 750/1000 до 7500/10 000 кВА включительно, с высоким напряжением от 601 до 34 500 вольт включительно и низким напряжением от 208Y / 120 до 4160 вольт включительно. В части I этого стандарта описаны определенные электрические и механические требования и учтены некоторые характеристики безопасности двухобмоточных трехфазных вентилируемых трансформаторов с номинальной мощностью 501 кВА и более, обычно используемых для ступенчатых трансформаторов. -низкие цели. Часть II описывает другие требования или альтернативы, которые могут быть указаны для некоторых приложений, и перечисляет номинальные параметры принудительного воздушного охлаждения для определенных размеров.

.

Области применения изоляционных материалов | Автоматический выключатель

перейти к содержанию

Главное меню

  • ДОМ
  • Схемы Переключить меню
    • Интегральные схемы Переключатель меню
      • Интегральные схемы Важные вопросы
    • Сетевой анализ
  • Система питания Переключатель меню
    • Защита системы питания Переключатель меню
      • Защита энергосистемы Важные вопросы
    • Современная энергосистема
  • Электронная связь Переключатель меню
    • Микропроцессоры
    • Электронные устройства
    • Электронные приборы
  • Электроприводы
  • Переключатель меню
    • Электрические машины
    • Статические реле
  • Высокое напряжение
Поиск .

Что такое изоляционные материалы?

Стандарт IEEE для вентилируемых силовых трансформаторов сухого типа, 501 кВА и более, трехфазных, с высоким напряжением от 34,5 кВ до 601 В и низким напряжением от 208Y / 120 В до 4160 В, охватывающий общие требования. Действующий стандарт был обновлен в 2008 году.

Этот стандарт предназначен для определения характеристик, относящихся к производительности, ограниченной электрической и механической взаимозаменяемости и безопасности описываемого оборудования, а также для помощи в правильном выборе такого оборудования.Конкретные комбинации номинальных значений описаны в диапазоне от 750/1000 до 7500/10 000 кВА включительно, с высоким напряжением от 601 до 34 500 вольт включительно и низким напряжением от 208Y / 120 до 4160 вольт включительно. В части I этого стандарта описаны определенные электрические и механические требования и учтены некоторые характеристики безопасности двухобмоточных трехфазных вентилируемых трансформаторов с номинальной мощностью 501 кВА и более, обычно используемых для ступенчатых трансформаторов. -низкие цели. Часть II описывает другие требования или альтернативы, которые могут быть указаны для некоторых приложений, и перечисляет номинальные параметры принудительного воздушного охлаждения для определенных размеров.

.

Изоляционные материалы, свойства - Большая химическая энциклопедия

Текущие рыночные тенденции указывают на растущую популярность устойчивых к коррозии и температурным воздействиям устройств MEMS для использования на массовом рынке. Свойства материала кремний-на-изоляторе открывают путь для совершенно нового диапазона применений и применений, при этом они доступны в достаточно больших количествах, чтобы удовлетворить потребности производства в больших объемах. Можно ожидать прорыва этих устройств в автомобильную промышленность, если они смогут выдержать ценовое давление.[Стр.198]

IEC 60216, Электроизоляционные материалы. Свойства термической стойкости, 1990-2001 гг. [Стр.129]

DIN EN 60216 Электроизоляционные материалы - Свойства термической стойкости (МЭК 60216) Немецкая версия EN 60216 ... [Стр.250]

Фенол - формальдегидные смолы используются в качестве формовочных смесей (см. Фенольные смолы ). Их тепловые и электрические свойства позволяют использовать их в электрических, автомобильных и кухонных деталях. Другие области применения фенолформальдегидных смол включают пеногидро-изоляцию, связующие для литейных форм, декоративные и промышленные ламинаты и связующие для изоляционных материалов.[Pg.497]

Две параллельные пластины из проводящего материала, разделенные изоляционным материалом, называемым диэлектриком, составляют электрический конденсатор. Две пластины могут быть электрически заряжены, подключив их к источнику постоянного тока. Количество электрической энергии, которая может храниться таким образом, называется емкостью конденсатора и является функцией напряжения, площади пластин, толщины диэлектрика и характерного свойства диэлектрического материала, называемого диэлектрической постоянной.[Pg.325]

Р. Бартникас, «Технические диэлектрики, том II A - Электрические свойства изолирующих материалов SoHd, молекулярная структура и электрические свойства», Специальная техническая публикация ASTM 783, 1983, главы. 1—5, с. 3—515. [Pg.330]

Влажность. Поглощенная и удерживаемая влага, особенно в виде льда, оказывает значительное влияние на структурные и термические свойства изоляционных материалов. Большинство пенопластов закрытого типа имеют низкую проницаемость, особенно там, где существуют естественные или связанные поверхностные покрытия с низкой проницаемостью (29,30).При проектировании, строительстве и строительстве требуются соответствующие замедлители парообразования, оболочки, покрытия, герметики и т. Д. Для предотвращения присутствия влаги. Однако нельзя полностью исключить образование паров влаги, поэтому возможность поглощения и удержания влаги всегда присутствует. Замораживание влаги и замораживание ячеек приводят к необратимому снижению тепловых и структурных характеристик. [Pg.335]

Приложения. Высокая термостойкость и хорошая солевая совместимость велановой камеди указывают на ее потенциал для использования в качестве добавки в некоторых аспектах добычи нефти и природного газа.Велан также имеет суспензионные свойства, превосходящие ксантановую камедь, что желательно при проведении буровых работ на нефтяных месторождениях и проектах гидроразрыва пласта. Он совместим с этиленгликолем, и описана композиция велан-этиленгликоль, которая образует вязкий материал, пригодный для изготовления изоляционных материалов (244). [Pg.299]

Свойства, требуемые для изоляции кабеля и материалов подложки гибких схем, включают механическую гибкость, усталостную выносливость и устойчивость к химическим веществам, водопоглощение и истирание.В качестве изоляционных материалов для кабелей используются как термопласты, так и реактопласты. Термопластические материалы обладают прекрасными электрическими характеристиками и доступны по относительно низкой цене. [Pg.534]

Таблица 14. Механические и электрические свойства изоляционных материалов кабелей ...
Силиконовая пена, образованная таким образом, имеет открытую структуру и является относительно плохим изоляционным материалом. Размер клеток можно контролировать путем выбора наполнителей, которые служат местами зарождения пузырьков.Добавление кварца в качестве наполнителя улучшает огнестойкость полукокса, поэтому можно достичь выхода> 65%. Благодаря своим превосходным водонепроницаемым свойствам, сиуконная пена используется в строительных и строительных системах противопожарной защиты, а также в качестве изоляции труб на электростанциях. Типичные физические свойства сиуконовой пены приведены в таблице 10. [Стр.56]

Полистирол общего назначения. Полистирол - это кристально чистый термопласт с высокой молекулярной массой (M = 2–3 x 10), твердый, жесткий, без запаха и вкуса.Простота термической обработки, термостабильность, низкий удельный вес и низкая стоимость позволяют получать формованные изделия, экструзии и пленки с очень низкой удельной стоимостью. Кроме того, материалы из полистирола обладают превосходными тепловыми и электрическими свойствами, которые делают их полезными в качестве недорогих изоляционных материалов (см. Изоляция, ЭЛЕКТРИЧЕСКАЯ изоляция, теплоизоляция). [Pg.505]

На свойства изоляционного материала сильно влияют влажность, температура, повторяющиеся перенапряжения и пары химических веществ. Необходимо соблюдать осторожность, чтобы избежать этих вредных воздействий, чтобы продлить срок службы машины.[Стр.224]

Повышение температуры на гарантированной мощности для проверки соответствия изоляционного материала и срока службы двигателя. Если превышение температуры превышает допустимое для используемого типа изоляции, это ухудшит изоляционные свойства и вызовет термическое старение. В качестве ... [Pg.250]

С появлением этих соединений в 1960-х годах, ранее более традиционные изоляционные материалы, такие как фенолформальдегид (широко известный как бакелит) и древесина (облицованная пропиткой) были почти заменены их.Эти составы обладают лучшими электромеханическими свойствами, чем обычные материалы. Ниже мы описываем базовую смесь и свойства этих двух основных соединений для краткой справки. [Pg.369]

Изоляционные материалы и их свойства Старение изоляции Практика использования изоляционных систем Процедура пропитки под вакуумом Техническое обслуживание изоляции Контроль качества изоляции катушек HT, сформированных во время производства ... [Pg.996]

Большинство пластиков материалы могут рассматриваться как электрические изоляторы, т.е.е. они способны выдерживать разность потенциалов между разными точками данного куска материала при прохождении только небольшого электрического тока и малой энергии рассеяния. При оценке потенциального изоляционного материала потребуется информация о следующих свойствах ... [Pg.110]

Изолирующие свойства полиэтилена выгодно отличаются от свойств любого другого диэлектрического материала. Поскольку это неполярный материал, такие свойства, как коэффициент мощности и диэлектрическая проницаемость, практически не зависят от температуры и частоты.Диэлектрическая проницаемость линейно зависит от плотности, и уменьшение плотности при нагревании приводит к небольшому снижению диэлектрической проницаемости. Некоторые типичные данные приведены в таблице 10.6. [Pg.226]

В настоящее время полистирол доступен в определенных формах, в которых свойства продукта заметно отличаются от свойств исходного полимера. Из них наиболее важным является пенополистирол, чрезвычайно ценный изоляционный материал, который в настоящее время доступен с плотностью всего 1 фунт / фут (16 кг / м).В литературе описан ряд процессов производства ячеистого продукта, четыре из которых представляют особый интерес при производстве больших плит. [Pg.457]

Электрические свойства Традиционно пластмассы находят применение в приложениях, где требуется электрическая изоляция. PlFt и полиэтилен - одни из лучших доступных изоляционных материалов. Свойства материала, которые особенно важны для электрической изоляции, - это электрическая прочность, сопротивление и трекинг.[Стр.32]

Изолирующие свойства любого изолятора разрушаются в достаточно сильном электрическом поле. Электрическая прочность определяется как электрическая прочность (В / м), которую может выдержать изоляционный материал. Для пластиков электрическая прочность может варьироваться от 1 до 1000 МВ / м. Материалы можно сравнивать на основе их относительной диэлектрической проницаемости (или диэлектрической проницаемости). Это отношение диэлектрической проницаемости материала к диэлектрической проницаемости вакуума. Способность ... [Стр.32]

Прочность материала является определяющим фактором при проектировании многих конструкций, подверженных ударным нагрузкам. Для тех материалов, которые должны работать в широком диапазоне температур, температурная зависимость различных свойств материала часто является первостепенной задачей. Другие конструкции подвержены износу или коррозии, поэтому устойчивость материала к этим воздействиям является важной частью выбора материала. Тепловая и электрическая проводимость могут быть конструктивными факторами для некоторых приложений, поэтому необходимо выбирать материалы с надлежащими диапазонами поведения для этих факторов.Точно так же акустические и теплоизоляционные характеристики материалов часто диктуют выбор материалов. [Стр.390]


.

Смотрите также