Норма расхода водоэмульсионной краски на 1м2 в 2 слоя


Нормы расхода водоэмульсионной краски на 1 м2 стен: какие факторы влияют и параметры расчета в зависимости от вида краски

Планируя проводить внутренние отделочные работы самостоятельно, красить стены, потолок, нужно заранее рассчитать расход материалов. Рассмотрим, какой расход водоэмульсионной краски на 1 м2 стены за 1 раз следует предусмотреть.

Водоэмульсионная универсальная краска для стен.

Факторы, влияющие на расход краски

Для определения требуемого количества водоэмульсинного раствора необходимо учитывать тип выбранной эмульсии – она может быть изготовлена на основе силикона, акриловой смолы, силикатов, минералов. Но при расчетах нужно принять во внимание и потенциальное влияние других факторов:

Таблица по расчету водоэмульсионной краски.
  • способ окрашивания;
  • влажности и температуры окружающей среды;
  • проведения подготовки поверхностей к окрашиванию;
  • планируемого количества слоев нанесения эмульсии.

Наиболее выгодным способом окрашивания считается распыление краски пульверизатором. При его применении удастся уменьшить расход красящей эмульсии, увеличить скорость выполнения работ. Но покраску стен пульверизатором лучше доверить профессионалам.

Ненамного выше использованный объем будет, если окрашивать перекрытия валиком. При его использовании состав равномерно распределяется по окрашиваемой поверхности. Нужно только правильно подобрать тип валика.

Если взять инструмент с длинным ворсом, то требуемое количество водоэмульсионного раствора для такой же площади стен, потолка возрастет в 1,5 раза.

Максимальным расход красящей эмульсии будет в случае, если применять для покраски малярные кисти. При их использовании на стенах могут оставаться следы от ворса, полосы.

При низких температурах водоэмульсионная краска плохо сцепляется с поверхностью, на которую ее наносят. Это усложняет процесс окрашивания и увеличивает расход. Если состав применяется для внутренних работ в помещениях с сухим воздухом, то требуемое количество материала возрастет – поверхности будут впитывать краску.

Минимизировать расход можно, если окрашивать гладкие стены. При покраске декоративных поверхностей расход возрастает на 20%. Это необходимо учитывать при покупке обоев под покраску. Любые поверхности предварительно нужно обработать грунтовкой. Это позволит уменьшить интенсивность впитывания эмульсии в стены, потолок.

Для получения насыщенного цвета специалисты по лакокрасочным работам советуют наносить два слоя краски. Если прокрашивать поверхности 2 раза, то расход соответственно возрастет. Это нужно учитывать при подсчетах требуемого количества эмульсии.

Различные виды материала и их расход

В продаже можно найти разные типы водоэмульсионных красок. Их различают по основам, которые использовались для производства растворов. Любой вид краски, который относится к водоэмульсионным, при нанесении не выделяет токсичных и вредных веществ. Работать с эмульсиями легко, т. к. у них отсутствует резкий неприятный запах, они быстро сохнут. Дополнительно покупать растворители для краски не нужно, она продается сразу разбавленной до требуемой консистенции.

В соответствии с нормами расхода наиболее экономичными считаются акриловые эмульсии, а максимальный расход на 1 квадратный метр – у латексных и поливинилацетатных красок.

Для придания покрытию цвета в белую эмульсию добавляют специальные красители – колеры. Получить желаемый тон стен можно, смешивая разные красители. Добавлять в водную эмульсию их необходимо так, чтобы количество красящего вещества не превышало 10% от объема основного раствора.

Эмульсия на основе акриловой смолы

Водоэмульсионная акриловая краска для внутреннего применения.

Наиболее востребованными и распространенными являются акриловые краски. Они производятся с добавлением полиакрилатов. В зависимости от предназначения в эмульсию могут добавить компоненты, отвечающие за водостойкость, или иные вещества, необходимые для придания краскам требуемых рабочих свойств.

После высыхания окрашенные поверхности становятся устойчивы к истиранию, они не боятся влаги. Использовать акриловые эмульсии можно для работ внутри помещений, для покраски фасадов домов и других объектов на улице. Чтобы определить требуемое количество водоэмульсионной акриловой краски, надо исходить из того, что на каждые 10 м² требуется от 1,8 до 2,5 кг. При покрытии вторым слоем необходимо 1,5 кг на 10 м².

Эмульсия на основе силикона

Силиконовые краски после высыхания образуют паропроницаемый слой. Их рекомендуют наносить на такие поверхности, где повышен риск образования плесени. Они подходят для влажных, плохо вентилируемых помещений.

Силиконовые эмульсии используют для проведения отделочных работ внутри помещений. Расход материала на каждые 10 м² при нанесении первого слоя достигает 3 кг. При повторном покрытии на такую же площадь поверхностей потребуется уже около 1,5 кг.

Эмульсии с добавлением силикатов

В составе силикатных красок содержится жидкое стекло. Благодаря этому они после высыхания становятся твердыми, устойчивыми к механическим повреждениям. Срок службы такого покрытие исчисляется десятками лет. Но силикатные эмульсии боятся влаги, поэтому их не рекомендуют использовать в помещениях, в которых повышена влажность.

Расход указанного вида раствора высок. Для нанесения 1 слоя на каждые 10 м² нужно 4 кг, для второго слоя потребуется 3 кг.

Раствор на основе минералов

Минеральные растворы производятся с добавлением цемента либо гашеной извести. Они подходят для работы внутри помещений. Лучше всего наносить минеральные эмульсии на бетонные или кирпичные поверхности.

Расход красящих растворов, произведенных на основе минералов, на каждые 10 м² составляет 5,5 кг при первом нанесении и 3,5 кг – при повторном окрашивании.

Пример расчета площади стен комнаты

Посчитать требуемое количество материалов для покраски стен можно следующим образом. Если есть комната со стандартной высотой потолков 2,5 м, шириной 3 м и длиной 5 м, то для расчета ее площади следует определить периметр и умножить его на высоту помещения.

В указанном примере периметр будет (3+5)*2=16 м, а площадь 16*2,5 = 40 м². Из указанного размера следует исключить площадь тех поверхностей, которые не будут окрашиваться – двери, окна. В среднем они занимают около 3-4 м².

Покупать краску желательно с запасом. Ее расход далеко не всегда совпадает с тем, который указывают изготовители на упаковке.

Расход водоэмульсионной краски на 1 м2 стены за 2 раза нанесения

Краски на водной основе — хороший вариант отделки потолков и перегородок в доме. Они экономичны, требуют минимума времени и почти не оставляют грязных следов. И конечно, при покупке строительных материалов, не хочется переплачивать за лишние объемы, или наоборот, ехать повторно в магазин, затрачивая свое время, чтобы купить то, чего не хватило. Поэтому, перед работой необходимо правильно определить расход водоэмульсионной краски на 1 м2 стены

Какие факторы влияют на расход краски

Количество материала зависит от типа поверхности. На гладкую стену достаточно нанести два слоя, на рельефной плитке их нужно делать больше. Расход материала зависит от следующих факторов:

  • тип краски
  • состояние подложки;
  • укрывистость состава;
  • вязкость;
  • применяемые в работе инструменты;
  • наносимые цвета и оттенки;
  • добавки.

Различные виды лакокрасочных веществ на 1 квадратный метр ложатся по-разному. В одних случаях наносится несколько слоев, в других — достаточно двух. Подложка из дерева, штукатурки, обоев, плитки требует разного объема краски. Самое большое количество материала идет на деревянные поверхности, немного меньше — на гипсокартон. Наименьший расход фиксируется на металле.

Большое значение имеет качество подготовки подложки. Главное в этом процессе — нанесение шпаклевки. Ею обрабатываются площади с недостатками. После этого проводится многослойное грунтование.

Расход на 1 квадрат зависит от укрывистости. На темные поверхности тратится больше материала из-за добавочного количества слоев. Вязкость разных красителей, имеющих однородную консистенцию, отличается. При пользовании кистями или валиками затраты зависят от длины ворса. Добавки разбавляют краску и уменьшают время высыхания, что так же влияет на объемы материала.

К этим факторам надо добавить состояние микроклимата в комнате. Высокая влажность увеличивает время высыхания обработанных поверхностей. Повышенная температура сокращает время сушки, но увеличивает количество затраченных материалов.

При выполнении наружных работ краска испаряется быстрее, поэтому на фасадную сторону наносятся дополнительные слои, требующие больших затрат материалов, чем для внутренних работ.

Норма расхода на 1 м2 в зависимости от вида водоэмульсионной краски

Водоэмульсионные составы пользуются большим спросом у потребителей по причине относительно низких цен и экологической безопасности. При использовании, смесь не пахнет. На банках написаны значения расхода при покраске , но не всегда удается получить их на практике. Происходит это из-за различия материалов основы, и их технических характеристик. Стандартные нормы существуют, и они приведены в таблице:

Тип краски Сколько нужно на начальный слой, в г/м² На последующие слои
Акриловая 200 150
Латексная 600 400
Поливинилацетатная 550 350
Силикатная 400 350
Силиконовая 300 150

Данные не учитывают особенностей поверхности и рассчитаны на подготовленную основу. При колеровке белых смесей необходимо учитывать пропорции компонентов, тип поверхности, насыщенность цвета.

Как видно из таблицы, самый большой расход — у латексной краски. Она достаточно густая, что влияет на ее затраты. Правда, стоит отметить, что этот материал обладает хорошими эксплуатационными свойствами и окрашиваемая поверхность служит «верой и правдой» многие годы.

У силиконовых и силикатных составов расход несколько меньше, но выше, чем у акриловой. Они так же обладают высокими эксплуатационными свойствами: срок службы покрытия составляет 20-25 лет. Этот фактор стоит учитывать, ведь в совокупности за это время можно съэкономить львиную долю бюджета на обновление.

Поливинилацетатная эмульсия внешним видом напоминает густую сметану, за счет чего характеризуется высоким расходом на 1м2. С другой стороны, краска относительно недорогая, и может обойтись по затратам, в целом, как и акриловая.

Что же касается составов на основе акрила, они отличаются низкой стоимостью и неприхотливостью. Хорошо ложатся на холст, дерево, кирпич, бетон, бумагу, быстро высыхают и образуют прочную пленку. Обладают экологической и пожарной безопасностью, простотой использования, богатой палитрой цветов. Срок эксплуатации покрытия — около 10 лет. Расход — самый минимальный при сравнении с другими водоэмульсионными красками.


Определиться с выбором материала поможет статья: виды водоэмульсионной краски


Виды и производители водоэмульсионной краски

Замеры помещения и расчет площади окрашиваемой поверхности

Для определения необходимого количества краски, нужно произвести расчеты площади, приготовленной к обработке. Замеряется длина и ширина поверхности. Данные перемножаются. Из них нужно вычесть площадь окон, дверей и других участков, которые не нужно красить. Результат — площадь для окрашивания. Зная показатели расхода краски, можно подсчитать ее количество.

Пример расчета площади стен

Для примера можно взять ванную комнату со стенами размера 2м и 3м при высоте 2,5 м. В комнате имеется окно 0,9х1,2 м и дверь 0,9х1,7 м. Для проведения расчета выполняются такие операции:

  1. Вычисляется общая площадь: S = (2+2)х2,5 + (3+3)х2,5 = 25 м².
  2. Определяем площадь дверей и окон: 0,9х1,2 = 1,08 м²; 0,9х1,7 = 1,53 м².
  3. Высчитывается площадь для покраски: 25 — 1,08 — 1,53 = 22,39 м².

Нормативный расход каждого слоя остается сложить и умножить на 22,39. Для запаса рекомендуется добавить еще 5-7%. Например, нужно вычислить расход акриловой краски за 2 раза окрашивания:

22,39 м²х (250+150)= 8956г

С учетом запаса в 5-7% получаем 9,5 кг акриловой краски необходимо для покраски помещения площадью 22,39м2 в 2 слоя.


Для расчета расхода краски в зависимости от типа состава и особенностей поверхности Вы можете воспользоваться калькулятором расхода.


Что зависит от производителя краски

Производители время от времени улучшают  качество выпускаемых материалов, что может положительно влиять на их расход. С этой целью в красители вводятся различные добавки. Для примера приведем данные затрат краски, указанные на этикетках известных брендов:

  • фирма «Текс Профи» добилась покрытия площади 11 м² с расчетом 1 л материала;
  • расход Dulux BM — 1 л/16 м²;
  •  Tikkurila: для Harmony — 1 л/12 м², для Euro-20 — 1 л/6 м²
  • большие показатели затраты материала  у Profilux PL-20. Они составляют 1 кг/5 м².

Как уменьшить расход

Для уменьшения количества потраченной краски используются разные способы. Лучшими можно назвать:

  • прогрев воздуха в помещении до температуры +25…+50°С;
  • доведение влажности до 80% с помощью увлажнителя;
  • подготовка поверхности с помощью шпатлевки и грунтовки;
  • использование краскопульта вместо валиков и кистей.

При использовании кистей в работе для экономии покрасочного материала нельзя делать размашистых движений, чтобы не потерять ни капли материала. Для формирования одинаковой толщины слоев рекомендуется давить на кисть равномерно.

При покраске валиком, нужно правильно выбрать и наполнить лоток. Он должен полностью вмещать в себя рабочий инструмент, но не погружать более четверти его корпуса. Густую краску в этом случае допускается разводить водой, добавляя ее до 10% от общей массы. Материал тщательно раскатывают по поверхности.

Быстросохнущую водоэмульсионную краску можно считать лучшей при домашнем использовании. Ее расход зависит от характеристик основания, от инструмента нанесения, от фирмы изготовителя.

 

Расход водоэмульсионной краски на 1 м2: нормы расхода и отклонения

Если принято решение использовать для окрашивания водоэмульсионную краску, важно заранее узнать, какой будет расход данного состава. Чтобы правильно высчитать нужное количество красителя, вначале узнают расход водоэмульсионной краски на 1 м2, после чего этот показатель умножается на количество квадратных метров, которые будут окрашиваться. Некоторые думают, что можно определить нужное количество краски на глаз, но во многих случаях это приводит к ухудшению качества работы, состава обычно не хватает, и приходится тратить время на дополнительную его покупку.

Разновидности красок и их расход

Первым делом важно определиться, какая именно разновидность лакокрасочного материала будет применяться для покраски потолка или стен. Характеристики водоэмульсионных красок и их расход определяется составом материала. Вот список основных разновидностей водоэмульсионных красителей и их расход при однослойном и двухслойном нанесении:

  1.  Поливинилацетатная. Данная краска имеет расход при нанесении одним слоем 0,55 кг на 1 квадратный метр, а при нанесении вторым слоем – 0,35 кг.
  2.  Силикатная. Расход такой краски при однослойном нанесении – 0,4 кг на один квадратный метр, при окрашивании вторым слоем – 0,35 кг.
  3.  Силиконовая. Расход – 0,3 кг на 1 кв. м., при нанесении второго слоя расходование составит 0,15 кг на 1 квадратный метр.
  4.  Акриловая. Чтобы нанести первый слой, потребуется 0,25 кг на 1 кв. м., а при окрашивании вторым слоем – 0,15 кг на 1 кв. м.
  5.  Латексная смесь имеет наибольшее расходование по сравнению с другими видами водоэмульсионной краски. Ее расход при нанесении первого слоя составляет 0,6 кг на 1 кв. м., а чтобы нанести второй слой потребуется 0,4 кг на 1 кв. м.

Можно очень быстро высчитать расход водоэмульсионной краски для нанесения на стены или потолок, для этого можно воспользоваться калькулятором расхода, который приводится на интернет-ресурсах.

Акриловые составы

Красители на основе акриловых смол в наше время являются самыми популярными и часто используемыми. Кроме основного компонента – акриловой смолы, в составе имеются разные добавки и вещества, необходимые для придания раствору необходимых характеристик.

После высыхания акрилового водоэмульсионного материала получается надежный и долговечный защитный слой, которому не страшно механическое воздействие и высокая влажность. В большинстве случаев акриловые краски являются экологически чистыми и безопасными для здоровья человека. Они подходят для обработки стен как внутри помещений, так и для фасадных, уличных работ.

Средний расход акриловой водоэмульсионной краски составляет около 250 граммов на квадратный метр, при нанесении первого покрытия, но если окрашивать, например шпаклевку, которая была предварительно грунтована, то расход может уменьшиться до 180 граммов. При нанесении второго слоя обычно требуется около 150 граммов на квадратный метр. Конкретный показатель будет зависеть от вида основания и технологии окрашивания.

Силиконовые смеси

Эти водоэмульсионные смеси основаны на силиконе, к которому добавляются другие вещества, благодаря чему после окрашивания поверхность остается паропроницаемой. Силиконовые краски можно использовать не только для стен и потолков, их можно наносить даже на пол, где они будут препятствовать появлению плесени и грибков.

Водоэмульсионные составы на основе силикона – это отличный вариант для тех стен, на которых много небольших трещин, ширина которых составляет 1-2 миллиметра. По сравнению с акриловыми смесями, силиконовые растворы чаще используют для интерьерных внутренних работ. Стандартный расход на 1 квадратный метр составляет 300 граммов, а второй слой требует всего 150 граммов, но эти показатели могут отличаться, в зависимости от впитывающей способности основания.

Силикатные растворы

Эти красящие вещества содержат жидкое стекло, благодаря которому покрытие имеет высокий показатель устойчивости к механической нагрузке и другим неблагоприятным воздействиям. Эксплуатационный срок силикатного покрытие может достигать нескольких десятилетий, однако важно помнить, что такое покрытие не любит высокой влажности воздуха. Из-за этого ограничивается сфера использования силикатных красителей.

При окрашивании первым слоем требуется около 400 граммов состава на один квадратный метр, а при втором нанесении – от 300 до 350 граммов.

Минеральные растворы

Они включают в себя какие-либо натуральные минералы, например, цемент, гашеную известь и другие. Эти красящие смеси используются только для внутренней финишной обработки, применяются для нанесения на кирпичные и бетонные основания. Обычно расход водоэмульсионной краски на 1м2 – примерно 550 граммов, и 350 граммов для второго нанесения.

В магазинах сегодня можно купить поливинилацетатную водоэмульсионную красящую смесь, которая содержит клей ПВА. Поливинилацетатные красители имеют минимальную устойчивость к влажности. Расходование данной краски такое же, как у минеральных красителей.

Важно! Сегодня в продаже есть растворы в аэрозольных баллончиках. Расходование таких составов спрогнозировать очень сложно, даже учитывая нормы и показатели, приведенные на упаковке заводом-изготовителем. Обычно эти смеси обладают резким, неприятным запахом.

От каких факторов зависит расходование

Те нормы, которая приведены выше, считаются обобщенными, стандартными. Однако при некоторых обстоятельствах эти цифры могут изменяться, поэтому во время покупки водоэмульсионной краски важно учитывать разные факторы, которые приведены ниже.

Во многом показатель расходования зависит от укрывистости, этот показатель индивидуален для каждого красителя. Укрывистость напрямую влияет на то, сколько слоев требуется нанести. Стандартное лакокрасочное покрытие – это окрашивание двумя слоями, причем при нанесении каждого следующего слоя требуется меньше красящей смеси. То, каким будет расходование, во многом определяется видом поверхности. У каждого строительного материала своя впитывающая способность. Так, например, гипсокартон и древесина гораздо быстрее и в большем объеме поглощают краску, по сравнению с кирпичом и бетоном. Помимо этого, на расходование влияют такие факторы:

  •  каким инструментом наносится красящая смесь. Наиболее экономичной считается кисточка, а у валика расход больше, однако конкретный показатель зависит от длины ворса. Чем длиннее ворсинки, тем большим будет расходование. Пульверизатор тоже наносит смесь достаточно экономно, однако при использовании данного инструмента достаточно сложно рассчитать, сколько смеси потребуется, особенно если нет опыта работы с ним;
  •  температура воздуха. Когда окрашивание проводится при высокой температуре, то расходование будет больше, ведь жидкость испаряется гораздо быстрее. Слишком низкая температура также приводит к неэкономичному расходованию, ведь состав не может нормально сцепляться с основанием;
  •  влажность. Сухая поверхность быстрее поглощает красящий раствор. Не рекомендуется окрашивать, если влажность воздуха выше 80%;
  •  подготовительные работы. Если во время подготовки наносилась шпаклевка и грунтовка, то расходоваться состав будет гораздо медленнее, чем, если шпатлевание и грунтование не проводилось;
  •  технология покраски. Этот фактор тоже немаловажен, он влияет на толщину слоя, соответственно и на скорость расходования красящей смеси.

Итак, чтобы точно рассчитать, сколько водоэмульсионной краски потребуется, нужно учитывать много разных факторов. Специалисты всегда советуют приобретать состав с небольшим запасом, благодаря чему не придется снова идти в магазин для дополнительной покупки лакокрасочного материала.

от чего зависит и как проводить расчет?

Водоэмульсионные краски относятся к экологичным материалам, работать с которым довольно просто, для чего надо знать все особенности их использования. Расход водоэмульсионной краски на 1 м2 площади поверхности — один из важных показателей, который необходим для расчета нужного для работы ее количества.

Что нужно знать

Водоэмульсионная краска — самая удобная для окрашивания стен и потолков, т.к. она оптимально ложится на любую поверхность, расположенную как снаружи дома, так и внутри помещения. Поверхность, на которую она наносится, может быть любая: бетон, кирпич, оштукатуренные стены, обои. Расход краски на 1 м2 зависит от того, какой тип окрашиваемой поверхности и других параметров:

  • Если перед покраской использовать грунтовку для стен или растворы, предназначенные для укрепления, то краска будет меньше впитываться, и можно будет обойтись одним слоем краски.
  • Раствор перед окрашиванием можно разбавить водой, клеем ПВА.
  • При покраске фактурной штукатурки, имеющей выступающие узоры, расходного материала требуется немного больше, чем для гладкой стены (на 10-20%).
  • Показатель укрывистости (количество эмульсии, которое пойдет на закрашивание темной поверхности) также влияет на ее расход. При его высоком значении оптимально нанесение двух слоев даже при повторном полном закрашивании, при более низком — потребуется наложение 3-х и более слоев.
  • Как правило, второй слой требует меньшее количество краски.
  • При использовании малярных кистей расход материала также увеличится, а вот распылитель станет идеальным инструментом для работы при умелом регулировании давления.
  • Чаще всего для окраски применяют валики, которые бывают нескольких видов: с короткошерстной (для гладких поверхностей) и длинношерстной шубкой (используется для окрашивания шероховатых стен), с поролоном. Последние 2 вида требуют большего количества отделочного материала.

Некоторые правила работы с валиком при покраске:

  • Лоток для краски подбирается по размеру так, чтобы валик в нем свободно помещался.
  • Эмульсию наливают в таком количестве, чтобы ее уровень был не выше четвертой части валика.
  • При окрашивании валик нужно прижимать к стене с одинаковой силой, чтобы получить ровное покрытие.
  • Валик не надо окунать в эмульсию слишком часто, а стараться окрашивать тонким и ровным слоем.
  • При слишком толстом слое во время окрашивания обязательно будет большой перерасход материала, к тому же произойдет его растрескивание.
  • Время подсушивания каждого слоя —1-2 ч.

Нормы расхода

На упаковке с отделочным материалом производителем указывается норма расхода, однако она рассчитана на работу профессионала и нанесение краски на ровную поверхность. Расход водоэмульсионной краски на 1 м2 во многих случаях зависит от ее вида и полимерного состава.

Таблица нормы использования ВД-краски на квадратный метр

Вид материала Норма расхода
первый слой, кг/м2 второй слой, кг/м2
Акриловая 0,25 0,15
Латексная 0,6 0,4
Силикатная 0,4 0,35
Силиконовая 0,3 0,15

Расход водоэмульсионки, которая сделана на водной основе, зависит также от производителя, от влажности воздуха и температуры в помещении. Оптимальный микроклимат при окрасочных работах — с теплым и сухим воздухом при +25-+50˚С.

При отделке фасада здания или других внешних работах расход водоэмульсионных красок на 1 м2 будет намного больше, т.к. поверхность здания более влажная, и влага испаряется быстрее. Поэтому окрашенный слой будет высыхать неравномерно, количество дополнительный слоев окраски увеличится.

Расход краски при окрашивании обоев также является большим, т.к. бумага быстро впитывает влагу.

Окрашивание различных поверхностей

Чаще всего окрашивание водоэмульсией делается по ошткатуренной стене или потолку. Поверхность штукатурки бывает гладкая или фактурная (декоративная). Во втором случае краски всегда понадобится больше, т.к. выпуклости рисунка придется окрашивать тщательно.

При окрашивании цветной штукатурки (с добавленными порошковыми красителями) количество водоэмульсии будет меньше, если ее тон такой же.

Если окраска предполагается с использованием цвета (колеровка), то необходимо покупать колер. В магазине, как правило, представлены каталоги фирм с использованием спектра цветов. При этом указываются и нормы расхода эмульсии, в зависимости от цвета колера.

Лучше сразу же рассчитать, сколько колера потребуется на 1 кг краски для получения желаемого цвета, чтобы потом не пришлось его докупать. При подсчете следует учитывать насыщенность цвета и вид поверхности.

Допустимое количество колера на 1 л краски составляет 30 мл, т.е. на 10 литров эмульсии понадобится 300 мл. Средний расход колера для ВД-краски равен 20% от общего объема белого состава.

На видео: количество колера для водоэмульсионной краски.

Как проводить расчет

Перед началом работы следует измерить окрашиваемые поверхности по длине и ширине, и вычислить их площадь. Для этого измеряются периметр помещения. Например, длина одной стены — 4 метра, ширина — 3 метра. В таком случае периметр составит: Р=(3*2)+(4*2)=14 метров. Также измеряется высота стен от пола до потолка. Если высота составляет 2,5 метра, то площадь высчитывается следующим образом: S=2,5*14=35 метров квадратных. Затем длина умножается на ширину. Все расчеты выполняются в метрах.

Затем следует учесть те места, где окрашивание не будет производиться, и вычесть их из общего показателя. В итоге получим необходимую для работы площадь, которую следует умножить на расход, указанный в таблице по квадратным метрам.


Для упрощения подсчетов вы можете воспользоваться нашим калькулятором. Для расчета нужно ввести следующую информацию:

  • площадь, которую нужно покрасить.
  • тип краски
  • поверхность и количество слоев

В результате вы получите примерное количество материала, которое вам понадобиться и его стоимость (используйте калькуляторы только для примерного расчета!!)

 

Для окрашивания потолка существуют специальные разновидности эмульсий. Краска для потолка имеет обычно повышенную износостойкость. Ее расход рассчитывается в пределах 1 л на 10 кв.м, иногда в реальности получается меньше.

Если нужно покрасить бетонную стену или необработанную древесину, то расход материала увеличится. При покраске старых побеленных стен количество используемой эмульсии будет напрямую зависеть от уровня загрязнения поверхности: чем больше грязи, тем больше слоев понадобится, чтобы получить качественное окрашивание.

Зависимость расхода краски от производителя

Любой производитель ставит себе цель улучшения всех характеристик отделочных материалов, обогащая их состав специальными добавками. Поэтому параметры укрывистости у разных фирм отличаются от вида материала.

Для примера приведем некоторые нормы нанесения красочного слоя у различных компаний:

Производитель Основа эмульсии Норма, 1 литр /кв.м
Дулюкс водорастворимая 7
Маршал ВД вододисперсионная 7-9
Текс водорастворимая 4-6
Текс латекс+акрил 9-12
Беккерс водоэмульсионная 7-10
Дюфа супервайс водоэмульсионная 6-8

И последний нюанс: чтобы сэкономить, совсем необязательно покупать дешевый материал. Лучше сопоставить нормы расхода эмульсии, указанные производителями — в некоторых случаях выгоднее использовать дорогую краску, имеющую более низкую норму расхода.

Как рассчитать площадь стен для покраски (2 видео)

Краска с разным показателем расхода (30 фото)

Расход краски на 1 м2 – Калькулятор по площади

На этой странице вы можете узнать нормативный расход краски на водоэмульсионной основе на 1 м2 или рассчитать общее потребление по указанной площади, например, для покраски стен. Инструмент позволяет выбрать разные поверхности нанесения – в качестве базовой принимается оштукатуренная поверхность, для металла и дерева действуют понижающие коэффициенты 1.2 и 1.1 соответственно. Норму расхода краски можно указать самостоятельно, таким образом инструмент можно использовать для расчета количества фасадных, эмалевых и масляных красок. Расход краски для второго и последующих слоев сокращается на 30%. Чтобы получить результат расчета, заполните поля калькулятора и нажмите кнопку «Рассчитать». Может быть вас также заинтересует расход эмали и расход лака.

 

Смежные нормативные документы:

  • СП 71.13330.2011 «Изоляционные и отделочные покрытия»
  • ГОСТ 12.3.005-75 ССБТ «Работы окрасочные. Общие требования безопасности»

 

Расход краски на 1 м2 – таблица

В данной таблице представлены усредненные значения расхода водоэмульсионных, масляных, алкидных и эмалевых красок на квадратный метр поверхности. Отдельно выделены наиболее распространенная эмаль ПФ-115 и красители от компании Тиккурила.

Тип краскиНормы расхода, литр/м2
акриловая0.250
латексная0.600
масляная0.120
поливинилацетатная (ПВА)0.550
силиконовая0,300
силикатная0,400
эмалевая0,150
эмалевая ПФ-115 белая0.120
эмалевая ПФ-115 желтый0.140
эмалевая ПФ-115 зеленый0.080
эмалевая ПФ-115 синий0.072
эмалевая ПФ-115 коричневый0.070
эмалевая ПФ-115 черный0.055
Тиккурила водоэмульсионная0.110
Тиккурила алкидная0.110
Тиккурила клеевая0.250

Снип нормы расхода краски фасадной на 1 м2

Как произвести расчёт

Для внутренней и внешней отделки помещения используют водно-дисперсионные смеси, основанные на акриле. Из-за этого такие красители не теряют свой цвет, не выгорают при долгом нахождении на солнце и обладают широкой цветовой гаммой. При желании можно достичь нужного тона, используя акриловую пасту. Эти разновидности придают поверхности матовый цвет.

Аэрозольную смесь из акрила следует наносить на площадь, где использовались краска и лак одного производителя. Максимально допустимая температура для работы составляет +50 градусов.

Во время выбора красителя важно учитывать советы, указанные на банке. Способ, при помощи которого наносится краска, также оказывает влияние на количество требуемого материала

Если покраска производится валиком, то смеси уйдет больше, чем при покраске краскопультом. Но если вы пользуетесь кисточкой, то вам понадобится краски на 15-20% больше указанного на упаковке количества

Способ, при помощи которого наносится краска, также оказывает влияние на количество требуемого материала. Если покраска производится валиком, то смеси уйдет больше, чем при покраске краскопультом. Но если вы пользуетесь кисточкой, то вам понадобится краски на 15-20% больше указанного на упаковке количества.

Акриловые смеси желательно наносить в два-три слоя. Количество слоев зависит от качества используемого состава. Если он достаточно качественный, то двух раз будет достаточно.

Если вы наносите красящий продукт на отштукатуренную поверхность или цемент, то следует дополнительно прогрунтовать обрабатываемую площадь. Не стоит забывать, что для стен используется один вид акриловых красок, а для потолка – другой. Объяснить это можно тем, ч

Использование воды и стресс - наш мир в данных

Забор воды: Забор воды (также иногда известный как «водозабор») определяется как пресная вода, забираемая из подземных или поверхностных источников воды (таких как реки или озера), постоянно или временно и используются в сельскохозяйственных, промышленных или муниципальных (бытовых) целях.

База данных AQUASTAT Продовольственной и сельскохозяйственной организации ООН (ФАО) определяет общего водозабора как: «Годовой объем водозабора для сельскохозяйственных, промышленных и муниципальных целей.Он может включать воду из первичных возобновляемых и вторичных источников пресной воды, а также воду из чрезмерного забора возобновляемых подземных вод или забора из ископаемых подземных вод, прямого использования сельскохозяйственных дренажных вод, прямого использования (очищенных) сточных вод и опресненной воды. Он не включает виды использования в русле реки, которые характеризуются очень низким уровнем чистого потребления, например, рекреация, судоходство, гидроэнергетика, рыболовство во внутренних водоемах и т. Д. »

Общий забор равен: [забор для сельского хозяйства] + [забор для промышленности] + [забор для муниципального / бытового использования].

База данных AQUASTAT Продовольственной и сельскохозяйственной организации ООН (ФАО) дает следующие определения для забора воды в сельском хозяйстве, промышленности и муниципальных образованиях:

Забор воды в сельском хозяйстве : «Годовое количество забираемой воды для нужд орошения, животноводства и аквакультуры. Он может включать воду из первичных возобновляемых и вторичных источников пресной воды, а также воду из чрезмерного забора возобновляемых подземных вод или забора из ископаемых подземных вод, прямого использования сельскохозяйственных дренажных вод, прямого использования (очищенных) сточных вод и опресненной воды.Вода для молочной и мясной промышленности и промышленной переработки собранной сельскохозяйственной продукции включена в промышленный водозабор ».

Промышленный водозабор : «Годовой объем самовозабора воды для промышленных нужд. Он может включать воду из первичных возобновляемых и вторичных источников пресной воды, а также воду из чрезмерного забора возобновляемых подземных вод или забора из ископаемых подземных вод, прямого использования сельскохозяйственных дренажных вод, прямого использования (очищенных) сточных вод и опресненной воды.Этот сектор относится к предприятиям с самообеспечением, не подключенным к общественной распределительной сети. Соотношение между чистым потреблением и изъятием оценивается менее чем в 5%. Он включает воду для охлаждения термоэлектрических и атомных электростанций, но не включает гидроэнергетику. Вода, забираемая предприятиями, подключенными к коммунальной сети водоснабжения, обычно включается в водозабор муниципальных предприятий ».

Муниципальный водозабор : «Годовой объем водозабора, в основном, для прямого использования населением.Он может включать воду из первичных возобновляемых и вторичных источников пресной воды, а также воду из чрезмерного забора возобновляемых подземных вод или забора из ископаемых подземных вод, прямого использования сельскохозяйственных дренажных вод, прямого использования (очищенных) сточных вод и опресненной воды. Обычно он рассчитывается как общий объем воды, забираемой коммунальной распределительной сетью. Он может включать в себя ту часть производств и городского сельского хозяйства, которая подключена к муниципальной сети. Соотношение между чистым потреблением и забираемой водой может варьироваться от 5 до 15% в городских районах и от 10 до 50% в сельской местности.»

.

Плотность, удельный вес и коэффициент теплового расширения

Плотность - это отношение массы к объему вещества:

ρ = м / В [1]

, где
ρ = плотность, обычно единицы [ г / см 3 ] или [фунт / фут 3 ]
м = масса, обычно единицы [г] или [фунт]
V = объем, обычно единицы [см 3 ] или [фут 3 ]

Чистая вода имеет максимальную плотность 1000 кг / м 3 или 1.940 снарядов / фут 3 при температуре 4 ° C (= 39,2 ° F).

Удельный вес - отношение веса к объему вещества:

γ = (м * г) / V = ​​ρ * г [2]

где
γ = удельный вес, ед. обычно [Н / м 3 ] или [фунт-сила / фут 3 ]
м = масса, обычно единицы [г] или [фунт]
g = ускорение свободного падения, обычно единицы [м / с 2 ] а значение на Земле обычно равно 9.80665 м / с 2 или 32,17405 фут / с 2
V = объем, типичные единицы [см 3 ] или [футы 3 ]
ρ = плотность, типичные единицы [г / см 3 ] или [фунт / фут 3 ]

Пример 1: Удельный вес воды
В системе SI удельный вес воды при 4 ° C будет:

γ = 1000 [кг / м3] * 9.807 [ м / с2] = 9807 [кг / (м2 с2)] = 9807 [Н / м3] = 9.807 [кН / м3]

В английской системе единицей измерения массы является снаряд [sl] , и она получается из фунт-сила, определив его как - масса, которая будет ускоряться со скоростью 1 фут в секунду в квадрате, когда на нее действует сила в 1 фунт :

1 [фунт f ] = 1 [сл] * 1 [фут / s2] и 1 [sl] = 1 [фунт f ] / 1 [фут / с2]

Плотность воды равна 1.940 сл / фут 3 при 39 ° F (4 ° C), а удельный вес в британских единицах измерения составляет

γ = 1,940 [сл / фут3] * 32,174 [фут / с2] = 1,940 [фунт f ] / ([фут / с2] * [фут3]) * 32,174 [фут / с2] = 62,4 [фунт f / фут3]

Подробнее о разнице между массой и весом

Онлайн-калькулятор плотности воды

Калькулятор ниже можно использовать для расчета плотности жидкой воды при заданных температурах.
Плотность на выходе указывается в г / см 3 , кг / м 3 , фунт / фут 3 , фунт / галлон (жидкий раствор США) и сл / фут 3 .

Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.

Плотность воды зависит от температуры и давления, как показано ниже:

Термодинамические свойства при стандартных условиях см. В разделе «Вода и тяжелая вода».
См. Также другие свойства Water при различных температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , нормальной и тяжелой воды, температуры плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, теплопроводность, температуропроводность и давление пара в газе -жидкое равновесие.
Для других веществ см. Плотность и удельный вес ацетона, воздуха, аммиака, аргона, бензола, бутана, диоксида углерода, монооксида углерода, этана, этанола, этилена, гелия, водорода, метана, метанола, азота. , кислород, пентан, пропан и толуол.
Плотность сырой нефти , плотность мазута , плотность смазочного масла и плотность авиационного топлива в зависимости от температуры.

Как показано на рисунках, изменение плотности не является линейным с температурой - это означает, что коэффициент объемного расширения воды не является постоянным во всем температурном диапазоне.

Плотность воды, удельный вес и коэффициент теплового расширения при температурах, указанных в градусах Цельсия:

Для полной таблицы с удельным весом и коэффициентом теплового расширения - поверните экран!

[фунт м / фут 3 ] -0,68 2 5,9431
Температура Плотность (0-100 ° C при 1 атм,> 100 ° C при давлении насыщения)
Удельный вес Коэффициент теплового расширения
[° C] [г / см 3 ] [кг / м 3 ] [сл / фут 3 ] [фунт м / галлон (жидкий раствор США)] [кН / м 3 ] [фунт f / фут 3 ] [ * 10 - 4 K -1 ]
0.1 0,9998495 999,85 1,9400 62,4186 8,3441 9,8052 62,419
1 0,9999017 999,90 1,9401 62,4218 8,3446 9,8057 62,422 -0,50
4 0,9999749 999,97 1,9403 62,4264 8.3452 9,8064 62,426 0,003
10 0,9997000 999,70 1,9397 62,4094 8,3429 1,9386 62,3719 8,3379 9,7978 62,372 1,51
20 0.9982067 998,21 1,9368 62,3160 8,3304 9,7891 62,316 2,07
25 0,9970470 997,05 1,9346 62,2436 8,3208 9,7777 62,244 2,57
30 0,9956488 995,65 1,9319 62,1563 8,3091 9.7640 62,156 3,03
35 0,9940326 994,03 1,9287 62,0554 8,2956 9,7481 62,055 3,45
40 0,9 992,22 1,9252 61.9420 8.2804 9.7303 61.942 3.84
45 0.99021 990.21 +1,9213 61,8168 8,2637 9,7106 61,817 4,20
50 0,98804 988,04 1,9171 61,6813 8,2456 9,6894 61,681 4,54
55 0,98569 985,69 1,9126 61,5346 8,2260 9,6663 61.535 4,86 ​​
60 0,98320 983,20 1,9077 61.3792 8.2052 9,6419 65168 8,1831 9,6159 61,214 5,44
70 0,97776 977,76 1.8972 61,0396 8,1598 9,5886 61,040 5,71
75 0,97484 974,84 1,8915 60,8573 8,1354 9,5599 60,857 5,97
80 0,97179 971,79 1.8856 60,6669 8,1100 9,5300 60,667 6.21
85 0,96861 968,61 1,8794 60,4683 8,0834 9,4988 60,468 6,44 9,4665 60,262 6,66
95 0,96189 961,89 1,8664 60.0488 8,0274 9,4329 60,049 6,87
100 0,95835 958,35 1,8595 59,8278 7,9978 9,3982 59,828 7,03
110 0,95095 950,95 1,8451 59,3659 7,9361 9,3256 59,366 8,01
120 0.94311 943,11 1,8299 58,8764 7,8706 9,2487 58,876 8,60
140 0, 926,13 1,7970 57,8164 7,7289 9,0822 57,816 9,75
160 0, 907,45 1,7607 56,6503 7,5730 8.8990 56,650 11,0
180 0,88700 887,00 1,7211 55,3736 7,4024 8,6985 53.9790 7.2159 8.4794 53.979 13.9
220 0.84022 840.22 1,6303 52,4532 7,0120 8,2397 52,453 16,0
240 0,81337 813,37 1,5782 50,7770 6,7879 7,9764 50,777 18,6
260 0,78363 783,63 1,5205 48,9204 6,5397 7,6848 48.920 22,1
280 0,75028 750,28 1,4558 46,8385 6,2614 7,3577 46,838 6,9837 44,457
320 0,66709 667,09 1,2944 41.6451 +5,5671 6,5419 41,645
340 0,61067 610,67 1,1849 38,1229 5,0963 5,9886 38,123
360 0,52759 527,59 1,0237 32,9364 4,4030 5,1739 32,936
373,946 0.3220 322,0 0,625 20,102 2,6872 3,1577 20,102


Таблица плотности воды, удельного веса и коэффициента теплового расширения при температурах, 000 в градусах Фаренгейта, для полного веса 7 9000 и коэффициент теплового расширения - поверните экран!

3,66 6,31 ,878 67168 5,663 5,663 5,663
Температура Плотность (0-212 ° F при 1 атм,> 212 ° F при давлении насыщения)
Удельный вес Коэффициент теплового расширения
[° F] [фунт м / фут 3 ] [сл / фут 3 ] [фунт м / галлон (США) жид.)] [г / см 3 ] [кг / м 3 ] [фунт f / фут 3 ] [кН / м 3 ] [ * 10 - 4 K -1 ]
32.2 62,42 1,9400 8,3441 0,99985 999,9 62,42 9,805 -0,68
62,42 9,806 -0,50
39,2 62,43 1,9403 8,3452 0,99997 1000,0 62.43 9,806 0,0031
40 62,42 1,9402 8,3450 0,99995 1000,0 62,42 9168 62,42 9168 0,99970 999,7 62,41 9,804 0,88
60 62,36 1,9383 8.3369 0,99898 999,0 62,36 9,797 1,59
70 62,30 1,9364 8,3283 0,9364 8,3283 0,9364 8,3283 0,9168 62,22 1,9338 8,3172 0,99662 996,6 62,22 9,773 2,72
90 62.11 1,9306 8,3035 0,99498 995,0 62,11 9,757 3,21
100 62,00 168
110 61,86 1,9227 8,2697 0,99093 990,9 61,86 9.718 4,08
120 61,71 1,9181 8,2499 0,98855 988,6 61,71 988,6 61,71 9,694 130168 4,46 9,694 4,46 9,694 4,46 986,0 61,55 9,669 4,81
140 61,38 1,908 8.205 0,9832 983,2 61,38 9,642 5,16
150 61,19 1,902 8,180 0,9168 61,00 1,896 8,154 0,9771 977,1 61,00 9,582 5,71
170 60.79 1,890 8,127 0,9738 973,8 60,79 9,550 6,05
180 60,58 1,88168
190 60,35 1,876 8,068 0,9668 966,8 60,35 9.481 6,57
200 60,12 1,869 8,037 0,9630 963,0 60,12 9,444 6,7162 958,4 59,83 9,398 7,07
220 59,63 1,853 7,971 0.9552 955,2 59,63 9,367
240 59,10 1,837 7,900 0,9467 946,7 7,824 0,9375 937,5 58,53 9,194
280 57,93 1.800 7,744 0,9279 927,9 57,93 9,100
300 57,29 1,781 55,59 1,728 7,431 0,8905 890,5 55,59 8,733
400 53.67 1,668 7,175 0,8598 859,8 53,67 8,432
450 51,45 1,599 500 48,92 1,521 6,540 0,7836 783,6 48,92 7,685
550 45.95 1,428 6,142 0,7360 736,0 45,95 7,218
600 42,36 1,317 625 40,12 1,247 5,363 0,6426 642,6 40,12 6,302
650 37.35 1,161 4,993 0,5982 598,2 37,35 5,867
675 33,79 1,050 33,79

Плотность воды и удельный вес при 1000 psi и данных температурах:

Для полного стола с удельным весом - поверните экран!

1,9
Температура Плотность (при 1000 psi или 68.1 атм) Удельный вес
[° C] [° F] [г / см 3 ] 2 3 кг / ] [сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (лик США)] [ фунт f / фут 3 ] [кН / м 3 ]
0.0 32 1,0031 1003,1 1,946 62,62 8,371 62,62 9,837
4,4 40 62,62 9,837
10,0 50 1,0031 1003,1 1,946 62,62 8,371 62.62 9,837
15,6 60 1,0024 1002,4 1,945 62,58 8,366 62,58 9,8165 62,50 8,355 62,50 9,818
26,7 80 0,9999 999,9 1.940 62,42 8,344 62,42 9,805
32,2 90 0,9981 998,1 1,937 998,1 1,937 62168 8,316 8,316 0,9962 996,2 1,933 62,19 8,314 62,19 9,769
43,3 110 0.9944 994,4 1,928 62,03 8,292 62,03 9,744
48,9 120 0,9912 120
54,4 130 0,9888 988,8 1,919 61,73 8,252 61,73 9.697
60,0 140 0,9864 986,4 1,914 61,58 8,232 61,58 9,673 8,207 61,39 9,644
71,1 160 0,9803 980,3 1,902 61.20 8,181 61,20 9,614
76,7 170 0,9768 976,8 1,895 60,98 8,1168 973,1 1,888 60,75 8,121 60,75 9,543
87,8 190 0.9696 969,6 1.881 60,53 8,092 60,53 9,509
93,3 200 0,9661 9665 9665
121,1 250 0,9456 945,6 1,835 59,03 7,891 59,03 9.273
148,9 300 0,9217 921,7 1,788 57,54 7,692 57,54 9,039 7,463 55,83 8,770
204,4 400 0,8636 863,6 1,676 53.91 7.207 53.91 8.469
260.0 500 0,7867 786,7 1,526 49,11 6,5164 точка


Плотность воды и удельный вес при 10 000 фунтов на кв. дюйм и заданных температурах:

Для полного стола с удельным весом - поверните экран!

64,4 62,4
Температура Плотность (при 10 000 фунтов на кв. Дюйм или 681 атм) Удельный вес
[° C] [° C] [г / см 3 ] [кг / м 3 ] [сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (жидк. США)] [фунт f / фут 3 ] [кН / м 3 ]
0.0 32 1,033 1033 2,004 64,5 8,62 64,5 10,13
4,4 40 10,12
10,0 50 1,031 1031 2.000 64,4 8,60 64.4 10,11
15,6 60 1,029 1029 1,997 64,3 8,59 64,3 10,09 64,1 8,58 64,1 10,08
26,7 80 1,026 1026 1,990 64.0 8,56 64,0 10,06
32,2 90 1,024 1024 1,986 63,9 8,54 63,9 8,54 63,9 1021 1,982 63,8 8,52 63,8 10,02
43,3 110 1,019 1019 1.977 63,6 8,51 63,6 9,99
48,9 120 1,017 1017 1,973 63,5 1,014 1014 1,968 63,3 8,46 63,3 9,94
60,0 140 1.011 1011 1,962 63,1 8,44 63,1 9,92
65,6 150 1,008 1008
71,1 160 1,005 1005 1,951 62,8 8,39 62,8 9,86
76.7 170 1,002 1002 1,945 62,6 8,37 62,6 9,83
82,2 180 9,80
87,8 190 0,996 996 1,932 62,2 8,31 62.2 9,77
93,3 200 0,992 992 1,926 62,0 8,28 62,0 9,73
60,8 8,13 60,8 9,55
148,9 300 0,953 953 1,849 59.5 7,95 59,5 9,35
176,7 350 0,930 930 1.805 58,1 7,716,16 905 1,756 56,5 7,55 56,5 8,88
260,0 500 0,847 847 1.643 52,9 7,07 52,9 8,31
315,6 600 0,774 774 1,501 48,3 галлон основан на 7,48 галлона на кубический фут .

  • 1 галлон (жидкий раствор США) = 3,7854 л = 0,8327 галлона (Великобритания) = 0,8594 галлона (сухой раствор США) = 0,1074 галлона (сухой раствор США) = 0,4297 упак. (Сухой раствор США) = 4 кварты (жидкий раствор США) = 8 пунктов (США) liq) = 16 c (США) = 32 gi (жидкий раствор США) = 128 жидких унций (США) = 1024 жидких унций (США) = 3.7854x10 -3 м 3 = 0,1337 футов 3 = 4,951x10 -3 ярдов 3

Для преобразования плотности в кг / м 3 в другие единицы плотности - или между единицами измерения - используйте приведенные ниже значения преобразования:

  • 1 кг / м 3 = 1 г / л = 0,001 кг / л = 0,000001 кг / см 3 = 0,001 г / см 3 = 0,99885 унций / фут 3 = 0,0005780 унций / дюйм 3 = 0,16036 унций / галлон (Великобритания) = 0,1335 унций / галлон (жидкий раствор США) = 0.06243 фунт / фут 3 = 3,6127x10-5 фунт / дюйм 3 = 1,6856 фунт / ярд3 = 0,010022 фунт / галлон (Великобритания) = 0,008345 фунт / галлон (жидкий раствор США) = 0,00194032 сл / фут 3 = 0,0007525 тонна (длинная) / ярд 3 = 0,0008428 тонна (короткая) / ярд 3

См. также преобразователь плотности

Пример 2: Плотность воды в унциях / дюйм 3
Плотность воды при температуре 20 o C составляет 998,21 кг / м 3 (таблица выше). Плотность в единицах унций / дюйм 3 может быть вычислена с помощью приведенного выше значения преобразования в

998.21 [кг / м 3 ] * 0,0005780 [(унция / дюйм 3 ) / (кг / м 3 )] = 0,5797 [унция / дюйм 3 ]

Пример 3: Масса горячего Вода
Бак объемом 10 м 3 содержит горячую воду с температурой 190 ° F. Из приведенной выше таблицы плотность воды при 190 ° F составляет 966,8 кг / м 3 . Можно рассчитать общую массу воды в баке

10 [м 3 ] * 966,8 [кг / м 3 ] = 9668 [кг]

См. Также гидростатическое давление в воде и энергию, накопленную в горячей воде.

.

Статистика водопользования - Worldometer

Статистика водопользования - Worldometer

Глобальное водопользование

Страна Годовое
Потребляемая вода
(м³, тыс. Литров)
Ежедневное потребление воды
На душу населения (литры)
Население
Афганистан 20,280,000,000 2,674 20,779,953
Албания 1,311,000,000 1,173 3,063,021
Алжир 9,97822000000 705 800 000 100 19 433 602
Антигуа и Барбуда 11 500 000 348 90,409
Аргентина 37,780 000 000 2,505 41,320 5006 Армения 2,847,000,000 2,649 2,944,791
Австралия 16,130,000,000 1,821 24,262,712
Австрия 3,492,000,000 1,138 8,409,949 8,409,949 9,845,320
Бахрейн 434,400,000 835 1,425,792
Бангладеш 35,870,000,000 681 144,304,167
Барбадос 1,452,000,000 421 9,445,643
Бельгия
.

Абсолютная, динамическая и кинематическая вязкость

Вязкость - важное свойство жидкости при анализе поведения жидкости и ее движения вблизи твердых границ. Вязкость жидкости - это мера ее сопротивления постепенной деформации под действием напряжения сдвига или напряжения растяжения. Сопротивление сдвигу в жидкости вызвано межмолекулярным трением, возникающим, когда слои жидкости пытаются скользить друг относительно друга.

  • вязкость - это мера сопротивления жидкости течению
  • меласса высоковязкая
  • вода средней вязкости
  • газ низкая вязкость

Есть два связанных показателя вязкости жидкости

  • 20004 9000 динамическая ( или абсолютная )
  • кинематическая
  • Динамическая (абсолютная) вязкость

    Абсолютная вязкость - коэффициент абсолютной вязкости - является мерой внутреннего сопротивления.Динамическая (абсолютная) вязкость - это тангенциальная сила на единицу площади, необходимая для перемещения одной горизонтальной плоскости относительно другой плоскости - с единичной скоростью - при сохранении единичного расстояния друг от друга в жидкости.

    Напряжение сдвига между слоями нетурбулентной жидкости, движущейся по прямым параллельным линиям, может быть определено для ньютоновской жидкости как

    Напряжение сдвига можно выразить

    τ = μ dc / dy

    = μ γ (1)

    , где

    τ = напряжение сдвига в жидкости (Н / м 2 )

    μ = динамическая вязкость жидкости (Н · с / м 2 )

    dc = единичная скорость (м / с)

    dy = единичное расстояние между слоями (м)

    γ = dc / dy = скорость сдвига (с - 1 )

    Уравнение (1) известно как закон трения Ньютона.

    (1) можно преобразовать для выражения Динамическая вязкость как

    μ = τ dy / dc

    = τ / γ (1b)

    В системе СИ единицы измерения динамической вязкости: Н с / м 2 , Па с или кг / (мс) - где

    • 1 Па с = 1 Н с / м 2 = 1 кг / (мс) = 0.67197 фунтов м / (фут с) = 0,67197 оторочка / (фут с) = 0,02089 фунта f с / фут 2

    Динамическая вязкость также может быть выражена в метрических единицах CGS (сантиметр) -грамм-секунда) система как г / (см с) , дин с / см 2 или пуаз (p) где

    • 1 пуаз = 1 дин с / см 2 = 1 г / (см · с) = 1/10 Па · с = 1/10 Н · с / м 2

    Для практического использования Poise обычно слишком велик, а его поэтому часто делится на 100 - на меньшую единицу сантипуаз (сП) - где

    • 1 P = 100 сП
    • 1 сП = 0.01 пуаз = 0,01 грамм на см секунду = 0,001 Паскаль секунды = 1 миллиПаскаль секунда = 0,001 Н · с / м 2

    Вода при 20,2 o C (68,4 o F) имеет абсолютную вязкость единиц - 1 сантипуаз .

    Жидкость Абсолютная вязкость *)
    ( Н с / м 2 , Па с)
    Воздух 1.983 10 -5
    Вода 10 -3
    Оливковое масло 10 -1
    Глицерин 10 0 Мед Жидкость 10 1
    Golden Syrup 10 2
    Стекло 10 40

    *) при комнатной температуре

    Кинематическая вязкость

    кинематическая вязкость соответствует соотношению кинематической вязкости - абсолютная (или динамическая) вязкость до плотности - величина, при которой никакая сила не задействована.Кинематическая вязкость может быть получена путем деления абсолютной вязкости жидкости на ее массовую плотность, например

    ν = μ / ρ (2)

    , где

    ν = кинематическая вязкость (м 2 / с)

    μ = абсолютная или динамическая вязкость (Н · с / м 2 )

    ρ = плотность (кг / м 3 )

    В системе SI теоретическая единица кинематической вязкости - м 2 / с - или обычно используемый Сток (St) , где

    • 1 St (Стокса) = 10 -4 м 2 / s = 1 см 2 / с

    Сток происходит от системы единиц CGS (сантиметр грамм-секунда).

    Поскольку Stoke является большим блоком, его часто делят на 100 на меньший блок сантисток (сСт) - где

    • 1 St = 100 сСт
    • 1 сСт (сантистокс ) = 10 -6 м 2 / с = 1 мм 2 / с
    • 1 м 2 / с = 10 6 сантистокс

    Удельный вес воды при 20,2 o C (68.4 o F) - это почти единица, и кинематическая вязкость воды при 20,2 o C (68,4 o F) для практических целей 1,0 мм 2 / с ( cStokes). Более точная кинематическая вязкость воды при 20,2 o C (68,4 o F) составляет 1,0038 мм 2 / с (сСт).

    Преобразование абсолютной вязкости в кинематическую в британских единицах измерения может быть выражено как

    ν = 6.7197 10 -4 μ / γ (2a)

    где

    ν = кинематическая вязкость (футы 2 / с)

    μ = абсолютная или динамическая вязкость (сП)

    γ = удельный вес (фунт / фут 3 )

    Вязкость и эталонная температура

    Вязкость жидкости сильно зависит от температуры - и для динамической или кинематической вязкости значение эталонной температуры Необходимо указать .В ISO 8217 эталонная температура остаточной жидкости составляет 100 o C . Для дистиллятной жидкости эталонная температура составляет 40 o C .

    • для жидкости - кинематическая вязкость уменьшается при более высокой температуре
    • для газа - кинематическая вязкость увеличивается при более высокой температуре

    Связанные мобильные приложения из Engineering ToolBox

    Это бесплатное приложение, которое может использоваться в автономном режиме на мобильных устройствах.

    Другие единицы измерения вязкости

    Универсальные секунды Сейболта (или SUS, SSU )

    Универсальные секунды Сейболта (или SUS ) являются альтернативной единицей измерения вязкости. Время истечения составляет универсальные секунды Сейболта ( SUS ), необходимое для протекания 60 миллилитров нефтепродукта через калиброванное отверстие вискозиметра Saybolt Universal - при тщательно контролируемой температуре и в соответствии с методом испытаний ASTM D 88. Этот метод имеет в значительной степени заменен методом кинематической вязкости.Saybolt Universal Seconds также называют номером SSU (Seconds Saybolt Universal) или номером SSF (Saybolt Seconds Furol) .

    Кинематическая вязкость в SSU в зависимости от динамической или абсолютной вязкости может быть выражена как

    ν SSU = B μ / SG

    = B ν сантистокс (3)

    7 где

    7

    ν SSU = кинематическая вязкость (SSU)

    B = 4.632 для температуры 100 o F (37,8 o C)

    B = 4,664 для температуры 210 o F (98,9 o C)

    μ = динамический или абсолютный вязкость (сП)
    SG = удельный вес
    ν сантистокс = кинематическая вязкость (сантистокс)
    градус Энглера

    градус Энглера используется в Великобритании в качестве шкалы Энглера . измерить кинематическую вязкость.В отличие от весов Saybolt и Redwood , шкала Engler основана на сравнении потока тестируемого вещества с потоком другого вещества - воды. Вязкость по Энглеру градусов - это отношение времени истечения 200 кубических сантиметров жидкости, вязкость которой измеряется, к времени истечения 200 кубических сантиметров воды при той же температуре (обычно 20 o C , но иногда 50 o C или 100 o C ) в стандартизированном измерителе вязкости Engler .

    Ньютоновские жидкости

    Жидкость, в которой напряжение сдвига линейно связано со скоростью сдвиговой деформации, обозначается как ньютоновская жидкость .

    Ньютоновский материал называется истинной жидкостью, поскольку на вязкость или консистенцию не влияет сдвиг, такой как перемешивание или перекачивание при постоянной температуре. Наиболее распространенные жидкости - как жидкости, так и газы - представляют собой ньютоновские жидкости. Вода и масла являются примерами ньютоновских жидкостей.

    Разжижающие при сдвиге или Псевдопластические жидкости

    Разжижающие при сдвиге или псевдопластические жидкости - это жидкости, вязкость которых уменьшается с увеличением скорости сдвига.Структура не зависит от времени.

    Тиксотропные жидкости

    Тиксотропные жидкости имеют временную структуру. Вязкость тиксотропной жидкости уменьшается с увеличением времени - при постоянной скорости сдвига.

    Кетчуп и майонез являются примерами тиксотропных материалов. Они кажутся густыми или вязкими, но их можно довольно легко перекачивать.

    Дилатантные жидкости

    Сгущающая жидкость при сдвиге - или дилатантная жидкость - увеличивает вязкость при перемешивании или деформации сдвига.Дилатантные жидкости известны как неньютоновские жидкости.

    Некоторые дилатантные жидкости могут почти затвердеть в насосе или трубопроводе. При взбалтывании сливки превращаются в составы масла и конфет. Глиняная суспензия и подобные сильно наполненные жидкости делают то же самое.

    Bingham Plastic Fluids

    Пластиковая жидкость Bingham имеет предел текучести, который необходимо превысить, прежде чем она начнет течь как жидкость. С этого момента вязкость уменьшается с увеличением перемешивания. Зубная паста, майонез и томатный кетчуп - примеры таких продуктов.

    Пример - Воздух, преобразование кинематической и абсолютной вязкости

    Кинематическая вязкость воздуха при 1 бар (1 10 5 Па, Н / м 2 ) и 40 o C составляет 16,97 сСт (16,97 10 -6 м 2 / с) .

    Плотность воздуха можно оценить с помощью закона идеального газа

    ρ = p / (RT)

    = (1 10 5 Н / м 2 ) / ((287 Дж / (кг · К)) ((273 o C) + (33 o C)))

    = 1.113 (кг / м 3 )

    где

    ρ = плотность (кг / м 3 )

    p = абсолютное давление (Па, Н / м 2 )

    R = индивидуальная газовая постоянная (Дж / (кг K))

    T = абсолютная температура (K)

    Абсолютная вязкость может быть рассчитана как

    μ = 1,113 (кг / м ) 3 ) 16,97 10 -6 2 / с)

    = 1.88 10 -5 (кг / (мс), Н с / м 2 )

    Вязкость некоторых обычных жидкостей

    9024 9024 Масло картера 9024 440 902 98
    сантистокс
    (сСт, 10 -6 м 2 / с, мм 2 / с )
    Секунда Сейболта
    Универсальная
    (SSU, SUS)
    Типичная жидкость
    0,1 Меркурий 1
    31 Вода (20 o C)
    4.3 40 Молоко
    SAE 20 Масло картера
    SAE 75 Трансмиссионное масло
    15,7 80 Мазут № 4
    20,6 100 Сливки 200 Растительное масло
    110 500 Масло картера SAE 30
    SAE 85 Трансмиссионное масло
    220 1000 Томатный сок
    SAE 50 Масло картера
    2000 SAE 140 Gear Oil
    1100 5000 Глицерин (20 o C)
    SAE 250 Gear Oil
    2200 10000 Мед Мед 28000 Майонез
    19000 86000 Сметана

    Кинематическая вязкость может быть преобразована из SSU в сантистоксов с

    ν сантистоксов = 0.226 ν SSU - 195/ ν SSU (4)

    где

    ν 10048

    10048

    SSU ν Сантистокс = 0,220 ν SSU - 135/ ν SSU

    где

    ν 900 Вязкость > и температура

    Кинематическая вязкость жидкостей, таких как вода, ртуть, масла SAE 10 и масла №.3 - и такие газы, как воздух, водород и гелий, показаны на схеме ниже. Обратите внимание, что

    • для жидкостей - вязкость уменьшается с температурой
    • для газов - вязкость увеличивается с температурой

    Измерение вязкости

    Для измерения вязкости используются три типа устройств

    • капиллярный вискозиметр
    • Вискозиметр Сейболта
    • Вискозиметр вращающийся
    .

    ГЛАВА 2 - ПОЧВА И ВОДА

    ГЛАВА 2 - ПОЧВА И ВОДА



    2.1 Почва
    2.2 Поступление воды в почву
    2.3 Состояние влажности почвы
    2.4 Доступная влажность
    2.5 Уровень подземных вод
    2.6 Эрозия почвы водой



    2.1.1 Состав почвы
    2.1.2 Профиль почвы
    2.1.3 Текстура почвы
    2.1.4 Структура почвы


    2.1.1 Состав почвы

    Когда сухая почва раздавливается рукой, можно увидеть, что она состоит из всевозможных частиц разного размера.

    Большинство этих частиц возникает в результате разложения горных пород; их называют минеральными частицами. Некоторые происходят из остатков растений или животных (гниющие листья, кусочки костей и т. Д.), Их называют органическими частицами (или органическими веществами). Кажется, что частицы почвы касаются друг друга, но на самом деле между ними есть промежутки.Эти пространства называются порами. Когда почва «сухая», поры в основном заполнены воздухом. После полива или дождя поры в основном заполняются водой. Живой материал находится в почве. Это могут быть живые корни, а также жуки, черви, личинки и т. Д. Они способствуют аэрации почвы и тем самым создают благоприятные условия для роста корней растений (рис. 26).

    Рис. 26. Состав почвы

    2.1.2 Профиль почвы

    Если вырыть в земле яму глубиной не менее 1 м, можно увидеть различные слои, разные по цвету и составу.Эти слои называются горизонтами. Эта последовательность горизонтов называется профилем почвы (рис. 27).

    Рис. 27. Профиль почвы

    Очень общий и упрощенный профиль почвы можно описать следующим образом:

    а. Пахотный слой (толщина от 20 до 30 см): богат органическими веществами и содержит много живых корней. Этот слой подлежит подготовке почвы (например, вспашка, боронование и т. Д.) И часто имеет темный цвет (от коричневого до черного).

    г. Глубокий пахотный слой: содержит меньше органических веществ и живых корней. Этот слой практически не подвержен нормальным подготовительным работам. Цвет более светлый, часто серый, а иногда пестрый с желтоватыми или красноватыми пятнами.

    г. Подземный слой: почти нет органических веществ или живых корней. Этот слой не очень важен для роста растений, так как до него доходят лишь несколько корней.

    г. Слой материнской породы: состоит из породы, в результате разложения которой образовалась почва.Эту породу иногда называют материнским материалом.

    Глубина различных слоев сильно различается: некоторые слои могут вообще отсутствовать.

    2.1.3 Текстура почвы

    Минеральные частицы почвы сильно различаются по размеру и могут быть классифицированы следующим образом:

    Название частиц

    Пределы размеров в мм

    Отличить невооруженным глазом

    гравий

    больше 1

    очевидно

    песок

    от 1 до 0.5

    легко

    ил

    от 0,5 до 0,002

    еле

    глина

    менее 0,002

    невозможно

    Количество песка, ила и глины, присутствующих в почве, определяет ее структуру.

    На крупнозернистых почвах: преобладает песок (песчаные почвы).
    В почвах средней толщины: преобладает ил (суглинистые почвы).
    В мелкозернистых почвах: преобладает глина (глинистые почвы).

    В поле текстуру почвы можно определить, потерев почву между пальцами (см. Рис. 28).

    Фермеры часто говорят о легких и тяжелых почвах. Грунт с крупной текстурой является легким, потому что с ним легко работать, а с мелкозернистым грунтом - тяжелым, потому что с ним трудно работать.

    Выражение, используемое фермером

    Выражения, используемые в литературе

    свет

    песчаный

    грубая

    средний

    суглинистый

    средний

    тяжелая

    глинистый

    штраф

    Текстура почвы постоянная, фермер не может ее модифицировать или изменять.

    Рис. 28а. Грунт крупнозернистый. - песчаный. Отдельные частички рыхлые и разваливаются в руке даже во влажном состоянии.

    Рис. 28б. Грунт средней текстуры на ощупь очень мягкий (как мука) в сухом состоянии. Его можно легко отжать во влажном состоянии, и он станет шелковистым.

    Рис. 28c. Грунт с мелкой текстурой прилипает к пальцам во влажном состоянии и может образовывать шар при нажатии.

    2.1.4 Структура почвы

    Структура почвы означает группирование частиц почвы (песок, ил, глина, органические вещества и удобрения) в пористые соединения. Это так называемые агрегаты. Структура почвы также относится к расположению этих агрегатов, разделенных порами и трещинами (рис. 29).

    Основные типы агрегатов показаны на рис. 30: гранулированная, блочная, призматическая и массивная структура.

    Рис. 29. Структура почвы

    Когда она присутствует в верхнем слое почвы, массивная структура блокирует вход воды; прорастание семян затруднено из-за плохой аэрации.С другой стороны, если верхний слой почвы зернистый, вода легко проникает в него, и семена лучше прорастают.

    В призматической конструкции движение воды в почве преимущественно вертикальное, поэтому подача воды к корням растений обычно недостаточна.

    В отличие от текстуры, структура почвы непостоянна. С помощью методов обработки почвы (вспашка, рыхление и т. Д.) Фермер пытается получить зернистую структуру верхнего слоя почвы на своих полях.

    Фиг.30. Примеры грунтовых сооружений .

    ЗЕМЛЯННЫЙ

    БЛОКИРОВКА


    ПРИЗМАТИЧЕСКИЙ


    МАССИВНЫЙ


    2.2.1 Инфильтрация процесс
    2.2.2 Скорость проникновения
    2.2.3 Факторы влияет на скорость инфильтрации


    2.2.1 Процесс инфильтрации

    Когда на поле подается дождевая или поливная вода, она просачивается в почву. Этот процесс называется инфильтрацией.

    Инфильтрацию можно визуализировать, налив воды в слегка утрамбованный стакан с сухой измельченной почвой. Вода просачивается в почву; цвет почвы становится темнее по мере ее увлажнения (см.рис.31).

    Рис. 31. Инфильтрация воды в почву

    2.2.2 Скорость инфильтрации

    Повторите предыдущий тест, на этот раз с двумя стаканами. Один заполнен сухим песком, а другой - сухой глиной (см. Рис. 32а и б).

    Вода проникает в песок быстрее, чем в глину. Говорят, что песок имеет более высокую скорость инфильтрации.

    Рис. 32а. В каждый стакан подается одинаковое количество воды

    Рис.32b. Через час вода просочилась в песок, в то время как некоторое количество воды все еще остается на глине

    Скорость инфильтрации почвы - это скорость, с которой вода может просачиваться в нее. Обычно измеряется глубиной (в мм) слоя воды, которую почва может поглотить за час.

    Скорость инфильтрации 15 мм / час означает, что для просачивания слоя воды толщиной 15 мм на поверхности почвы потребуется один час (см. Рис. 33).

    Фиг.33. Почва со скоростью инфильтрации 15 мм / час

    Диапазон значений скорости инфильтрации приведен ниже:

    Низкая скорость инфильтрации

    менее 15 мм / час

    средняя скорость инфильтрации

    от 15 до 50 мм / час

    высокая скорость инфильтрации

    более 50 мм / час

    2.2.3 Факторы, влияющие на скорость инфильтрации

    Скорость инфильтрации почвы зависит от постоянных факторов, таких как текстура почвы. Это также зависит от различных факторов, таких как влажность почвы.

    и. Текстура почвы

    Грунты с крупнозернистой структурой состоят в основном из крупных частиц, между которыми имеются большие поры.

    С другой стороны, мелкозернистые почвы в основном состоят из мелких частиц, между которыми находятся мелкие поры (см.рис.34).

    Рис. 34. Интенсивность инфильтрации и текстура почвы

    В грубых почвах дождевая или поливная вода попадает и перемещается в более крупные поры; для проникновения воды в почву требуется меньше времени. Другими словами, скорость инфильтрации выше для крупнозернистых почв, чем для мелкозернистых почв.

    ii. Влажность почвы

    Вода проникает быстрее (скорость инфильтрации выше), когда почва сухая, чем когда она влажная (см. Рис.35). Как следствие, когда поливная вода подается на поле, вода сначала легко проникает, но по мере того, как почва становится влажной, скорость инфильтрации снижается.

    Рис. 35. Интенсивность инфильтрации и влажность почвы

    iii. Структура почвы

    Вообще говоря, вода проникает быстро (высокая скорость инфильтрации) в зернистые почвы, но очень медленно (низкая скорость инфильтрации) в массивные и плотные почвы.

    Поскольку фермер может влиять на структуру почвы (посредством культурных практик), он также может изменять скорость инфильтрации своей почвы.


    2.3.1 Влажность почвы
    2.3.2 Насыщенность
    2.3.3 Полевая продуктивность
    2.3.4 Постоянная точка увядания


    2.3.1 Влажность почвы

    Содержание влаги в почве указывает количество воды, присутствующей в почве.

    Обычно выражается как количество воды (в мм водной глубины), присутствующее на глубине одного метра почвы.Например: когда количество воды (в мм водной глубины) составляет 150 мм на глубине одного метра почвы, влажность почвы составляет 150 мм / м (см. Рис. 36).

    Рис. 36. Влажность почвы 150 мм / м

    Содержание влаги в почве также может быть выражено в объемных процентах. В приведенном выше примере 1 м 3 почвы (например, с глубиной 1 м и площадью поверхности 1 м 2 ) содержит 0,150 м 3 воды (например.грамм. глубиной 150 мм = 0,150 м и площадью поверхности 1 м 2 ). В результате содержание влаги в почве в объемных процентах составляет:

    Таким образом, влажность 100 мм / м соответствует 10 объемным процентам.

    Примечание: Количество воды, хранящейся в почве, не является постоянным во времени, но может меняться.

    2.3.2 Насыщенность

    Во время дождя или полива поры почвы заполняются водой.Если все поры почвы заполнены водой, почва считается насыщенной. В почве не осталось воздуха (см. Рис. 37а). В поле легко определить, насыщена ли почва. Если выжать горсть насыщенной почвы, немного (мутной) воды потечет между пальцев.

    Растениям нужен воздух и вода в почве. При насыщении воздуха не будет и растение пострадает. Многие культуры не выдерживают насыщенных почвенных условий в течение более 2-5 дней. Рис - одно из исключений из этого правила.Период насыщения верхнего слоя почвы обычно длится недолго. После прекращения дождя или орошения часть воды, находящейся в более крупных порах, уйдет вниз. Этот процесс называется дренированием или перколяцией.

    Вода, стекающая из пор, заменяется воздухом. В крупнозернистых (песчаных) почвах дренаж завершается в течение нескольких часов. В мелкозернистых (глинистых) почвах дренаж может занять несколько (2-3) дней.

    2.3.3 Вместимость поля

    После прекращения дренажа большие поры почвы заполняются воздухом и водой, в то время как более мелкие поры все еще полны водой.На этом этапе считается, что почва полностью заполнена. При урожайности полей содержание воды и воздуха в почве считается идеальным для роста сельскохозяйственных культур (см. Рис. 37b).

    2.3.4 Постоянная точка увядания

    Постепенно вода, хранящаяся в почве, поглощается корнями растений или испаряется с верхнего слоя почвы в атмосферу. Если в почву не подается дополнительная вода, она постепенно высыхает.

    Чем суше становится почва, тем плотнее удерживается оставшаяся вода и тем труднее корням растений извлекать ее.На определенном этапе потребления воды недостаточно для удовлетворения потребностей растения. Растение теряет свежесть и увядает; листья меняют цвет с зеленого на желтый. В конце концов растение умирает.

    Содержание влаги в почве на стадии отмирания растения называется точкой постоянного увядания. В почве все еще содержится немного воды, но корням слишком трудно высосать ее из почвы (см. Рис. 37c).

    Рис. 37. Некоторые характеристики влажности почвы

    Почву можно сравнить с резервуаром для воды для растений.Когда почва насыщен, резервуар полон. Однако часть воды быстро стекает ниже корневую зону до того, как растение сможет ее использовать (см. рис. 38a).

    Рис. 38а. Насыщенность

    Когда эта вода стечет, почва полностью заполнена. Корни растений вытягивают воду из того, что остается в резервуаре (см. Рис. 38b).

    Рис. 38b. Вместимость поля

    Когда почва достигает точки постоянного увядания, оставшейся воды больше нет доступны для завода (см. рис.38c).

    Рис. 38c. Постоянная точка увядания

    Количество воды, фактически доступной растению, - это количество воды, хранящейся в почве при заполнении поля, за вычетом воды, которая останется в почве при постоянной точке увядания. Это показано на рис. 39.

    Рис. 39. Доступная влажность или влажность почвы

    Доступное содержание воды = содержание воды на уровне поля - содержание воды в точке постоянного увядания..... (13)

    Доступное содержание воды во многом зависит от текстуры и структуры почвы. Диапазон значений для различных типов почв приведен в следующей таблице.

    Почва

    Доступное содержание воды в мм глубины воды на м глубины почвы (мм / м)

    песок

    от 25 до 100

    суглинок

    100 до 175

    глина

    175–250

    Пропускная способность поля, постоянная точка увядания (PWP) и доступная влажность называются характеристиками влажности почвы.Они постоянны для данной почвы, но сильно различаются от одного типа почвы к другому.


    2.5.1 Глубина Уровень подземных вод
    2.5.2 Подземные воды таблица
    2.5.3 Капиллярный подъем


    Часть воды, нанесенной на поверхность почвы, дренируется ниже корневой зоны и питает более глубокие слои почвы, которые постоянно насыщаются; верхняя часть насыщенного слоя называется уровнем грунтовых вод или иногда просто уровнем грунтовых вод (см.рис.40).

    Рис. 40. Уровень грунтовых вод

    2.5.1 Глубина уровня грунтовых вод

    Глубина залегания грунтовых вод сильно варьируется от места к месту, в основном из-за изменений топографии местности (см. Рис. 41).

    Рис. 41. Изменения глубины уровня грунтовых вод

    В одном конкретном месте или поле глубина уровня грунтовых вод может изменяться во времени.

    После сильных дождей или орошения уровень грунтовых вод повышается.Он может даже проникнуть в корневую зону и пропитать ее. В случае продолжительного действия такая ситуация может иметь катастрофические последствия для сельскохозяйственных культур, которые не могут противостоять «мокрым ногам» в течение длительного периода. Если уровень грунтовых вод выходит на поверхность, он называется открытым уровнем грунтовых вод. Так бывает на болотистой местности.

    Уровень грунтовых вод может быть очень глубоким и удаленным от корневой зоны, например, после длительного засушливого периода. Чтобы корневище оставалось влажным, необходимо провести полив.

    2.5.2 Верхний слой подземных вод

    Слой грунтовых вод можно найти поверх водонепроницаемого слоя довольно близко к поверхности (от 20 до 100 см).Обычно он охватывает ограниченную территорию. Верхняя часть водного слоя называется возвышающимся уровнем грунтовых вод.

    Непроницаемый слой отделяет залегающий слой грунтовых вод от более глубоко расположенного горизонта грунтовых вод (см. Рис. 42).

    Рис. 42. Верхний уровень грунтовых вод

    Почву с непроницаемым слоем не намного ниже корневой зоны следует орошать с осторожностью, потому что в случае чрезмерного орошения (слишком большого орошения) верхний уровень грунтовых вод может быстро поднимаются.

    2.5.3 Капиллярный подъем

    До сих пор было объяснено, что вода может двигаться вниз, а также горизонтально (или сбоку). Кроме того, вода может двигаться вверх.

    Если кусок ткани погрузить в воду (рис. 43), вода будет всасываться тканью вверх.

    Рис. 43. Движение воды вверх или капиллярный подъем

    Тот же процесс происходит с уровнем грунтовых вод и почвой над ним. Подземные воды могут всасываться почвой вверх через очень маленькие поры, которые называются капиллярами.Этот процесс называется капиллярным подъемом.

    В мелкозернистой почве (глине) вода поднимается вверх медленно, но преодолевает большие расстояния. С другой стороны, в крупнозернистой почве (песке) вода поднимается вверх быстро, но проходит лишь небольшое расстояние.

    Текстура почвы

    Капиллярный подъем (в см)

    крупный (песок)

    от 20 до 50 см

    средний

    от 50 до 80 см

    мелкий (глина)

    более 80 см до нескольких метров


    2.6.1 Листовая эрозия
    2.6.2 Овощная эрозия


    Эрозия - это перенос почвы из одного места в другое. Климатические факторы, такие как ветер и дождь, могут вызвать эрозию, но также и при орошении.

    За короткий период процесс эрозии практически незаметен. Однако он может быть непрерывным, и весь плодородный верхний слой поля может исчезнуть в течение нескольких лет.

    Водная эрозия почвы зависит от:

    - склон: крутые, пологие поля более подвержены эрозии;
    - структура почвы: легкие почвы более чувствительны к эрозии;
    - объем или скорость потока поверхностных стоков: большие или быстрые потоки вызывают большую эрозию.

    Эрозия обычно наиболее сильна в начале полива, особенно при поливе на склонах. Сухая поверхностная почва, иногда разрыхленная при культивации, легко удаляется проточной водой. После первого полива почва становится влажной и оседает, поэтому эрозия уменьшается. Недавно орошаемые участки более чувствительны к эрозии, особенно на ранних стадиях.

    Существует два основных типа эрозии, вызываемой водой: пластовая эрозия и овражная эрозия. Их часто комбинируют.

    2.6.1 Листовая эрозия

    Листовая эрозия - это равномерное удаление очень тонкого слоя или «листа» верхнего слоя почвы с наклонной земли. Это происходит на больших площадях земли и вызывает большую часть потерь почвы (см. Рис. 44).

    Рис. 44. Листовая эрозия

    Признаками листовой эрозии являются:

    - только тонкий слой верхнего слоя почвы; или недра частично обнажены; иногда обнажается даже материнская порода;

    - достаточно большое количество крупного песка, гравия и гальки в пахотном слое, более мелкий материал удален;

    - обнажение корней;

    - отложение эродированного материала у подножия склона.

    2.6.2 Эрозия оврагов

    Эрозия оврагов определяется как удаление почвы концентрированным потоком воды, достаточно большим, чтобы образовать каналы или овраги.

    Эти овраги несут воду во время сильного дождя или полива и постепенно становятся шире и глубже (см. Рис. 45).

    Рис. 45. Эрозия оврага

    Признаками овражной эрозии на орошаемом поле являются:

    - неравномерное изменение формы и длины борозд;
    - скопление эродированного материала на дне борозд;
    - обнажение корней растений.

    .

    % PDF-1.3 % 1066 0 объект > endobj xref 1066 35 0000000016 00000 н. 0000001055 00000 н. 0000003181 00000 п. 0000003411 00000 п. 0000003633 00000 н. 0000003833 00000 н. 0000004308 00000 н. 0000004501 00000 п. 0000005210 00000 п. 0000005392 00000 п. 0000005415 00000 н. 0000006092 00000 н. 0000006115 00000 п. 0000006446 00000 н. 0000006469 00000 н. 0000006797 00000 н. 0000006820 00000 н. 0000007142 00000 п. 0000007165 00000 н. 0000007489 00000 н. 0000007691 00000 п. 0000008047 00000 н. 0000008070 00000 н. 0000008427 00000 н. 0000009198 00000 п. 0000009439 00000 п. 0000009533 00000 п. 0000009714 00000 н. 0000009737 00000 н. 0000010432 00000 п. 0000010455 00000 п. 0000011213 00000 п. 0000011293 00000 п. 0000001114 00000 н. 0000003157 00000 п. трейлер ] >> startxref 0 %% EOF 1067 0 объект > endobj 1099 0 объект > ручей HW} L Ͼ * ܇4 # + # J)% _ & IiKRHn4Y.РБДа, _6 ! m'MZ? HmR ը I: 4K'mi =; DHw {= y! 'BQ "Dȇ? b5 & .qOB] 粽 Ol | 0 \ qb | 6 ؏} ~ ֺ Vz {` ̉mUKbseM | 5u? W e: Ru { #vL> F ߃ ЅS '~ 9ag | ޸ wn $ pm | e} tS. ؾ MulR7p / 4 # так o5zn? rλ 蹏 ~ N_ ׅ w => _ IWeO = q כ w7 | _RnW | «tE 䎏 & IJD ށ MG / ެ; Ϗ ܞ hruU? / {} {O_ ܿ tlEW * 4jggT # lf: D_gX ՘ IЂĊ: # 6 || YIGbA # 9˫3 / (: + lrPQV $ * Uј 봀 xV% S ] 0 D9 5 @ PQ9i * p4VT [Ղ 'tcWx8gz ф.% M 3fj.F: ç $] 1q / = GʀBVX @ Τp1rT2: PK, 3c * / 15 {Lj (mukNa

    .

    Смотрите также