Сварка полуавтоматом в среде углекислого газа для начинающих


правильное обучение приемам сварки в среде углекислого газа для начинающих, особенности технологии, инструкция для чайников – Газовая сварка на Svarka.guru

С помощью аналогичного оборудования разные заготовки соединяются надежно и плотно, при этом не имеет особого значения химический состав металла, но влияет толщина. По сравнению с ручной сваркой КПД намного выше, а материальные затраты незначительные. Сварка полуавтоматом для начинающих начинается с изучения теории, затем переходят к практическому применению полученных знаний.

Что такое полуавтомат и его виды

Это электромеханическое устройство, подающее проволоку для припоя в зону горения дуги, у исполнителя одна рука занята плавящимся электродом, а другой он регулирует подачу газа. Начинающих сварщиков интересует вопрос, как варить полуавтоматом и какие специфические знания и навыки для этого требуются?

Все зависит от того, с каким материалом приходится работать, важно знать, каким металлом можно пользоваться, и какое оборудование при этом используется, немаловажное значение имеет и технология: дуговая, контактная, лазерная или плазменная. Чтобы точно знать, как нужно самостоятельно правильно варить промышленным полуавтоматом, достаточно изучить виды аналогичного оборудования и правильно их применять.

В быту и на производстве используются такие полуавтоматы:

  • Бытового назначения. В основном это инверторы различной модификации, при их использовании от исполнителя не требуется большого опыта и высокой квалификации.
  • Полупрофессиональные аппараты.
  • Промышленное профессионально оборудование.

[stextbox id=’warning’]Только третий вариант подразумевает сварку под насыпной защитой, когда вместо газа используется флюс.[/stextbox]

Каждый из перечисленных вариантов имеет личные преимущества и особенности, например, профессиональные оснащаются дополнительными функциями, увеличивающими эффективность их применения на производстве, они выпускаются в стационарном или мобильном виде.

Описание процесса

Сварочное полуавтоматическое оборудование разработано для соединения металлоконструкция при промышленном производстве. Основная задача — обеспечивать непрерывную подачу проволоки в активную зону горения сварочной дуги, а исполнитель производит движение горелки вдоль соединения заготовок. Скорость подачи плавящейся проволоки регулируется вручную.

По степени защиты зоны сварки от воздействия среды устройства разделяются на полуавтоматы для сварки с флюсом, в газовой среде и при использовании специальной порошковой проволокой. В первом случае флюс входит в состав проволоки, она в самодельных аппаратах применяется редко из-за своей дороговизны. Наиболее распространена сварка в газовой среде, а использование порошковой проволоки обычно совмещено с применением защиты газом.

Такое оборудование используется в промышленности для сварки тонкостенных конструкций, например, кузова легковых автомобилей, при этом сварочный шов, выполненный полуавтоматом, получается аккуратным и малозаметным.

Какие материалы следует использовать в работе

В качестве плавящегося электрода применяется проволока, диаметр которой варьируется в пределах 0,5—3,0 мм, что напрямую зависит от толщины соединяемых конструкций. Чем меньше диаметр, тем глубже провариваются заготовки, при его увеличении существенно возрастает сила тока, примерно 100 ампер на каждый дополнительный миллиметр.

Защитные газы, находящиеся в баллонах, используются в чистом или смешанном виде — это зависит от режима сварных работ и видов соединяемых металлов. Наибольшее применение в промышленности в чистом виде имеет аргон, так как по себестоимости он занимает лидирующее место.

Сила тока и напряжение

От силы подаваемого тока зависит производительность, установка тока производится на основании размеров диаметра используемой электродной проволоки и толщины заготовок. Чем больше ампер, тем глубже проплавливается шов. Большое влияние на весь процесс сварки оказывает скорость подачи проволоки.

Напряжение напрямую зависит от силы тока, а регулировка производится путем изменения холостого хода источника питания. При повышении напряжения ухудшается газовая защита, снижается целостность и однородность шва, так как возрастает разбрызгивание металла. Глубина проварки также снижается, практика показывает, что при полуавтоматическом процессе соединения деталей применяют высокую силу тока и небольшую величину напряжения.

Расход газа

Этот параметр сильно зависит от диаметра используемой проволоки и силы тока. При проведении сварочных работ на открытом пространстве и при наличии сквозняков, надо существенно увеличивать подачу газа, а это приводит к лишнему перерасходу. Для более эффективной защиты зоны горения сварочной дуги снижают скорость или сопло горелки располагают ближе к поверхности металлоконструкций. Эффективна защита места работы сварщика от влияния сквозняка специальными переносными экранами.

Техника сварки

Вопрос — как же правильно надо сваривать полуавтоматом, чтобы образовался красивый качественный шов, волнует многих начинающих сварщиков. Для этого нужно знать и выполнять порядок необходимых действий, как говорится, инструкция для чайников:
  1. Выбрать ток (переменный или постоянный), полярность, прямую или обратную.
  2. Подобрать актуальный диаметр проволоки, наиболее часто используемым считается 0,8 мм, но его применение оправдано для сварки конструкций не толще 5 мм.
  3. Выбрать нужную величину тока, всё полуавтоматическое оборудование выпускается с фиксированным положением переключателей, которые имеют дополнительные регулировки, а таблицы соответствия силы тока с толщиной заготовок приведены на лицевой стороне аппаратуры.
  4. Установить нужную скорость подачи проволоки для сварки.
  5. Расход защитного газа корректировать в зависимости от скорости сварочного процесса.
  6. Постоянно следить за наклоном и выносом сопла горелки.

В качестве защиты применяется смесь из аргона, углекислого газа и кислорода — при этом процесс происходит мягко, сварочная дуга горит стабильно, нет затухания, в результате шов получается плотный и без видимых изъянов.

В среде защитного газа

Такой вид соединения металлов выполняется при помощи специального оборудования, например, сварка полуавтоматом для начинающих в среде углекислого газа выполняется на специально оборудованном посту, где имеется все необходимые инструменты и баллон с углекислым газом, в том числе.

Если сравнивать с другими видами сварочных работ, то сварка с применением углекислого газа довольно проста и имеет такие особенности:

  • проводится на обратной полярности, чтобы исключить деформацию конструкции и добиться стабильных параметров дуги;
  • при наплавке металла используется прямая полярность, КПД во время проведения этой операции возрастает в 1,8 раза, по сравнению с первым вариантом;

Сварку лучше проводить с подключением к сети переменного тока, для этого используется осциллятор.

Технология для алюминия

Полуавтоматические аппараты используют для сварки изделий из алюминия, в качестве защиты применяется аргон, но при этом нужно учитывать, что цветной металл обладает высокой текучестью при расплавлении. Особенностью этого метода является обратная полярность, когда к горелке подключается минус, а на свариваемые заготовки — плюс.

Поверхностная амальгама алюминия успешно разрушается, деталь начинает плавиться без помех. При значительном слое окиси нужно провести предварительную механическую обработку для удаления окисной пленки с поверхности конструкции.

С проволокой

В качестве плавящегося электрода используется специальная проволока в мотках, которая заправляется в автомат ее подачи в зону горения дуги. Из газов не рекомендуется пользоваться водородом, так как при этом происходит сильное разбрызгивание и шов получается плохого качества. Специальный ГОСТ нормирует применение сварочной проволоки 75-ти марок, поэтому сварщику надо сопоставлять ее с маркой свариваемых деталей, давать какие-то рекомендации здесь трудно.

Стандартный комплект сварочного оборудования для MIG/MAG сварки.

Основные правила при проведении работ

Исполнитель должен помнить и строго выполнять следующие важные моменты:

  • Перед началом основной сварки сделать пробный шов на постороннем куске металла — так проводится регулировка подачи проволоки и силы тока, чтобы шов был высокого качества.
  • Сварку изделий производить строго по инструкции, которая имеется у любого аппарата.
  • При проведении работ сварщик должен быть экипирован в защитную одежду. Если работы проводятся в помещении, то надо обеспечить надежную вентиляцию.
  • Для каждого вида проволоки существует канавка определенной формы. У припоя без присадок углубление имеет V-образную форму, при наличии в составе проволоки флюса — аналогичная, но с боковыми насечками.
  • Нельзя проводить сварку, когда на поверхности металлов имеются горючие материалы — они должны удаляться, а свариваемые поверхности перед соединением хорошо зачистить.

[stextbox id=’alert’]Важно! Сварщику запрещается работать постоянно – надо делать технические перерывы.[/stextbox]

Первый опыт

Чтобы научиться использовать сложное оборудование, нужно внимательно ознакомиться с инструкцией, обратить особое внимание на раздел: как правильно пользоваться полуавтоматом. Затем настроить его, потому что верная регулировка силы тока позволит выполнить сварочный шов без изъянов и досадных пропусков.

 

[stextbox id=’info’]В. В. Тунгусков, Образование: АНО Учебный центр ИТЦ Эксперт (г. Москва), сварщик 4 разряда, опыт работы с 2009 года:«Для полуавтоматов лучше использовать импортную проволоку, т. к. она намного качественнее отечественных аналогов, но стоимость изделий при этом повышается».[/stextbox]

Баллон с редуктором

Для сварки используются только проверенные баллоны, на поверхности которых указана дата заполнения. Наиболее бюджетный вариант — использование углекислого газа в качестве зашиты места сварки от окисления, для этого приобретается баллон с редуктором. Устанавливается манометр, чтобы надежно контролировать давление газа в системе — оптимальная величина около 0,2 атмосфер.

Основные компоненты регулирования подачи газа от баллона к горелке.

Защитная маска

Для защиты лица и глаз используются специальные сварочные маски с затемненным окошком, которые надеваются на голову и высвобождают руки для работы. Производители современных аналогов разработали уникальную систему наподобие очков Хамелеон — стекло маски мгновенно становится непроницаемым при активации сварочной дуги.

Во время прекращения сварки окно становится прозрачным, так что маску можно не снимать, что намного упрощает действия сварщика, особенно когда он не обладает большим опытом проведения подобных работ.

Технология

После тщательной подготовки оборудования исполнитель делает легкое касание проволоки о поверхность свариваемых деталей для активации дуги. После её появления проволока ведется вдоль стыка на постоянном расстоянии, при этом одна рука занята горелкой, а второй — сварщик придерживает конструкцию. Зазор при толщине заготовок до 10 мм — 1 мм, далее он составляет не более 10% от толщины детали.

Проволока подается автоматически с выставленной заранее скоростью, а исполнитель формирует шов при плавлении металлов. Полуавтоматические аппараты выпускаются с газовой защитой или с применением флюса, каждый вариант имеет характерные особенности, но оба эффективны и позволяют получить качественное соединение конструкции.

Виды швов: коренные, заполняющие и косметические

При толщине металла 1,5 мм или менее, сплошной шов не применяется, так как возникает коробление от высокой температуры, при этом делается сварка с использованием точек диаметром 3—4 мм и шагом 10—25 мм. Заготовки с толщиной до 4 мм соединяют поэтапно, сначала с лицевой стороны, а потом с изнанки.

Для сварки конструкций, имеющих толщину 6 мм и более, требуется подготовка: кромки подтачивают до плотного соединения, с лицевой стороны снимается фаска под углом в 300. Перед сваркой детали закрепляют в струбцинах с зазором не менее 0,5 и не более 2 мм. Вначале выполняют коренной шов при циклическом замыкании и заполняют дно стыка до начала скоса фасок.

Затем аппаратура переводится в режим сварки методом распыления, производят полное заполнение шва на всю глубину за несколько заходов. После окончания работ поверхность зачищается металлической щеткой или кругом с абразивом. Теперь покрывается заполненный зазор косметическим швом, при этом скорость подачи проволоки снижают, а сварку ведут широким фронтом по ширине 8—15 мм, что напрямую зависит от толщины заготовки.

Проволокой делаются поперечные движения по переднему краю сварочной ванны при интенсивной скорости, чтобы края шва не остывали, а наплывы были минимальными. Горелка двигает по направлению к себе, а края косметического шва проплавливаются качественно, но высота валика не должна превышать 2 мм.

Дефекты швов, причины их возникновения

Классификация возможных дефектов приведена в ГОСТ 30242-97, они подразделены на такие группы:

  1. Растрескивание поверхности шва.
  2. Кратеры, полости, свищи и раковины от усадки металла.
  3. Вкрапления твердых частиц.
  4. Не проварка или не сплавление участков шва.
  5. Нарушена форма сварного шва.
  6. Другие дефекты.

Причинами появления таких негативных факторов может быть нарушение приемов при подготовке, сборке, термообработке соединений, а также низкая квалификация исполнителя или небрежности в работе.

Возможные дефекты, возникающие на сварном соединении металлов.

Сваривание толстых деталей

При соединении толстых конструкций дугу ведут не только вдоль соединяемых кромок, но и производят колебательные движения горелкой. Видов такой технологий много, но чаще всего используют возвратно-поступательные колебания и зигзаг. При этом ширина захода шва на поверхность конструкции пропорциональна ее толщине.

Свариваемым заготовкам задают зазор, так как при его отсутствии соединение будет непрочным из-за большой толщины конструкций. При соединении тавровых деталей из толстого металла готовый шов проваривается по нижней и верхней кромке с заходом на поверхность детали. Этим достигается упрочнение сварочного шва.

Выводы

Работа на полуавтоматическом стенде или при использовании аналогичного аппарата требует от исполнителя точности движений и строгого выполнения технологии. Вначале закрепляют полученные теоретические знания на практике, а потом уже получают допуск на эксплуатацию промышленного оборудования.

Сварка полуавтоматом для начинающих | Как правильно варить полуавтоматом

Создание металлических конструкций либо иное производство изделий из металла невозможно без сварочных работ. Одним из самых распространенных методов является сварка металлоконструкций полуавтоматом. Он востребован при соединении разных металлических заготовок: черных и цветных, толстых и листовых. В сварке полуавтоматическими аппаратами применяются современные технологии склейки металлов, которые положительно влияют на качество шва. Наибольшее распространение технология получила в производстве или кузовном ремонте автомобилей и другой техники.

Что такое полуавтоматическая сварка

Перед началом практических занятий по освоению технологии работы с полуавтоматическими станциями следует детально изучить теорию. Оборудование состоит из таких основных узлов:

  • основной блок, через который подается присадочная проволока и питание;
  • горелка с расположенной внутри нее проволокой;
  • сварочный рукав;
  • система снабжения защитным газом;
  • проводящий питание наконечник.

На больших предприятиях нередко применяются стационарные полуавтоматические установки для сварки деталей на сборочных линиях. Такое оборудование обеспечивает хорошее качество сварного соединения, равномерное распределение наплава по всей длине шва, высокую скорость выполнения работ и малое энергопотребление. В зависимости от принципа работа полуавтоматические модели делятся на несколько групп:

  • для сваривания кромок в защитной среде;
  • выполнение работ с использованием флюса;
  • сваривание с порошковой проволокой;
  • универсальные автоматические устройства.

Все без исключения установки отлично справляются с задачами соединения заготовок из цветных или черных металлов. В зависимости от типа подачи присадочной проволоки полуавтоматы бывают:

  • стационарными. Корпус установлен на специальную консоль либо иное основание и жестко закреплен;
  • переносные. Устройство имеет сравнительно небольшие габариты и вес. Может без особых усилий перемещаться одним человеком;
  • передвижные. Агрегат монтируется на тележке и передвигается в пределах одного помещения – как правило, цеха или сборочного участка.

Существует и классификация оборудования в зависимости от типа подающих роликов: тянущие, толкающие или толкающе-тянущие.

Технология сварки полуавтоматом

Сварка полуавтоматом с газом

При помощи полуавтомата можно сваривать детали из оцинкованного или поржавевшего металла. При соединении трудносвариваемых частей в качестве присадки применяется алюминиевая или медная проволока. Это дает возможность получить прочный с равномерным распределением наплава шов.

Когда планируется сваривать материалы в защитной среде или с применением флюса, предварительно выполняются подготовительные работы:

  • при помощи растворителя поверхность стыков обезжиривается и очищается от механических включений;
  • проверяется работа газового оборудования;
  • проваривается небольшой участок стыка. В этот момент корректируются основные настройки;
  • выполняется тонкий подбор напряжения и силы тока.

Самым простым вариантом применения полуавтомата считается работа в защитной среде. Используется любой инертный газ, который имеется в наличии: аргон, гелий, углекислый газ или азот. Техника сваривания от выбора газа не зависит и остается неизменной. Наиболее часто востребована углекислота, обладающая хорошими защитными свойствами и сравнительно невысокой стоимостью.

Преимущества использования полуавтоматов для сваривания в защитной среде:

  • остается неизменным внешний вид конструкции;
  • обрабатываются даже самые труднодоступные участки изделия;
  • на выходе получается тонкий и достаточно прочный сварной шов;
  • минимум отходов;
  • все работы выполняются быстро.

Насколько качественно будет сформирован шов зависит от трех основных факторов: соблюдения интервала между свариваемыми поверхностями, метода ведения проволоки вдоль соединения, соблюдения технологии и норм выполнения сварочных работ.

Читайте также: Какой газ используется для сварки полуавтоматом

Сваривание полуавтоматом без защитной среды

Выполнение работ без использования защитныхгазов является альтернативой, позволяющей избежать образования окислов и все время контролировать ход выполнения работ. Но это не означает, что процесс выполняется без защитной среды. В такой ситуации применяются флюсовые (порошковые) проволоки. В процессе плавления присадочного материала сгорает порошок, в результате чего образуется газовая среда, обеспечивающая создание качественного соединения. Принято различать несколько этапов сваривания заготовок с использованием безгазовой полуавтоматической сварки:

  • подбор оптимальной сварочной проволоки с флюсом;
  • настройка подачи присадочного материала;
  • закладывается флюс внутрь воронки;
  • открывается защитная заслонка, чтобы флюс мог попасть в зону сваривания;
  • запускается полуавтомат;
  • образуется электрическая дуга;
  • начало сварочных работ.

Необходимо подчеркнуть, что при помощи полуавтоматом можно соединять заготовки из разных материалов, в том числе и алюминия с нестандартными характеристиками. В качестве защитного газа при соединении алюминия используется аргон. Он необходим для того, чтобы при плавлении металла на его поверхности не образовалась новая оксидная пленка.

Читайте также: Как варить полуавтоматом без газа

Настройка сварочного полуавтомата

Тонкая настройка сварочного полуавтомата является обязательным условием для получения качественного сварного соединения. Перед началом эксплуатации оборудования сварщик должен выбрать:

  • скорость подачи присадочного материала;
  • силу тока;
  • оптимальное давление инертного газа.

Установки для автоматической сварки поставляются в комплекте с документацией, где содержится в том числе и информация по регулировке основных параметров сварки. Ориентируясь на данные таблиц, опытный сварщик сможет безошибочно выбрать наиболее подходящие для работы с тем или иным материалом параметры.

Насколько хорошо настроен агрегат можно проверить на ненужных кусках металла. Если шов получается ровным, гладким, без потеков и прерывания – значит настройки выбраны правильно. Оптимальное давление защитного газа должно варьироваться в диапазоне 1-2 атмосферы.

Для подготовки полуавтоматической сварки к работе следует:

  1. Подобрать проволоку наиболее подходящего размера. Большая часть востребованных расходных материалов имеет диаметр от 3 до 6 мм. Для сварки полуавтоматом в большинстве случаев выбирается проволока диаметром 4 мм.
  2. Протянуть присадку до горелки, чтобы она вышла и отрегулировать степень ее прижатия.
  3. Подготовить к применению защитный газ. Наиболее часто используется аргон или углекислота. Первый обеспечивает стабильность электродуги и сводит к минимуму образование брызг. А второй выгодно отличается невысокой стоимостью и прекрасно подходит для работы со стальными заготовками.
  4. К аппаратуре подключается газовый баллон.

При настройке аппаратуры нужно следовать установившимся правилам. Их соблюдение станет залогом получения качественного и ровного шва. Прежде всего, нужно добиться равномерного и стабильного горения электрической дуги. Важно тщательно очистить стыки от шлака, жира, краски и прочих загрязнений. Не менее значимым условием является оптимальная скорость подачи проволоки. Все параметры настройки можно найти в сопроводительной литературе, которая идет вместе с установкой. Заводские параметры не стоит воспринимать как догму. Они могут служить базисом, от которого сварщик оттолкнется в поиске наиболее подходящего варианта.

Дело в том, что каждый раз установки могут сильно отличаться в зависимости от:

  • выбранного режима работы;
  • качество энергоснабжения;
  • различия в составе свариваемого металла;
  • температура воздуха;
  • состав и диаметр присадочного материала;
  • пространственное расположение стыка;
  • вид и состав защитной среды.

Наиболее часто при настройке сварочного полуавтомата сварщики допускают ошибки, которые можно определить по таким симптомам:

  1. Посторонние звуки, которые напоминают громкий сухой треск. Такие симптомы возникают в том случае, когда присадочная проволока подается медленно. Достаточно просто увеличить скорость подачи проволоки, чтобы полностью исправить ситуацию.
  2. При выполнении работы наблюдается обильное разбрызгивание. Такое возможно в случаях, когда инертного газа подается слишком мало. Чтобы устранить проблему необходимо проверить редуктор – часто проблема заключается в его неисправности. Иногда достаточно просто увеличить поток газа.

  3. Плохое проваривание металла и как следствие – невысокое качество шва. Скорее всего, неверно выбрана индуктивность и напряжение.
  4. Валик получается неодинаковой толщины. Дефект образуется из-за того, что скорость движения горелки выбрана неправильно.
Читайте также: Как настроить сварочный полуавтомат

Виды сварочных швов при сварке полуавтоматом

Манипулируя настройками полуавтоматической сварки, специалист может получать самые разные типа швов. По своему виду они разделяются на несколько видов: тавровые, стыковые, угловые, нахлестовые. Есть несколько видов соединений, которые отличаются своим пространственным положением: нижние, потолочные, горизонтальные и вертикальные.

Формирование потолочного шва делится на два этапа:

  1. Проваривание основания. Коренной шов формируется, как правило, трехмиллиметровыми электродами с небольшой силой тока.
  2. Финальное формирование шва.

Второй этап может быть выполнен разными способами:

  • Соединение заготовок посредством наложения коротких прерывистых швов или методом точечной сварки. При таком подходя вероятность того, что капли расплавленного металла будут падать на сварщика минимальна. Такая технология подразумевает дополнительное проваривание заготовок в начале и конце стыка.
  • Выполнение работы с минимальной дугой. Особенность метода состоит в том, что шов очень быстро остывает: сразу после прерывания дуги.

Нижнее соединение – основной способ соединения металлов, который составляет основу промышленного производства сварных конструкций. Оно может выполняться как ручной дуговой, так и полуавтоматической сваркой. Такие швы характеризуются высокой механической прочностью, которая обеспечивается за счет равномерного распределения расплава.

При угловых соединениях режимы полуавтоматической сварки могут быть самыми разными. Расположение заготовок тоже вариативно:

  • Соединяемые поверхности размещены перпендикулярно. При подобном размещении проваривается только внутренний стык. В случаях, когда свариваются трубки, то требуется концентрическое выполнение шва по окружности.
  • Угол между соединяемыми поверхностями составляет меньше 60 градусов. Это идеальный вариант расположения: детали отлично провариваются со всех сторон.

При соединении труб или листового металла применяется стыковой шов. При таком варианте проварка может быть: односторонней, односторонней с обработкой, двухсторонней. Одностороння сварка приемлема, если толщина заготовок не превышает 4-х миллиметров. С более толстыми кромками желательно обрабатывать стык с двух сторон.

При односторонней сварке особое внимание следует уделять предварительной подготовке металла. Основательная разделка кромок является важным предусловием формирования качественного шва при полуавтоматической сварке в защитной среде. Разделывается кромка при помощи напильника или болгарки. Во время обработки инструмент держится так, чтобы угол на краю заготовки составлял примерно 45 градусов.

Соединение заготовок внахлест выбирается, когда нужно обеспечить высокое сопротивления шва на разрыв. Чтобы предотвратить скопление влаги, нужно положить швы по обе стороны соединяемых поверхностей. Тавровое соединение отлично подходит для соединения основания металлической конструкции.

Вертикальный шов

Технология формирования вертикального шва при помощи полуавтомата отличается несколькими особенностями:

  • Расплав должен остывать намного быстрее, нежели при горизонтальной сварке. Это необходимо для того, чтобы расплавленные капли не стекали на пол. Размер капель можно уменьшить, минимизировав размер сварочной дуги.
  • Вертикальная сварка выполняется по направлению снизу-вверх. В таком случае удается положить ровный шов, без наплывов и неровностей.

Чтобы добиться хорошего результата при вертикальном сваривании заготовок по направлению сверху-вниз, следует придерживаться нескольких основных правил. Первое – применять исключительно короткую дугу, чтобы уменьшить разбрызгивание и минимизировать объем расплава. Второе – в начале сварки электрод должен располагаться строго перпендикулярно по отношению к рабочей поверхности. Третье – дальше электрод ставится под острым углом. Но не стоит ожидать идеального результата. Как показывает практика швы обладают весьма скудными характеристиками. Прибегать к такому методу сваривания рекомендуется только в крайних случаях.

Существуют несколько основных техник формирования вертикального шва полуавтоматической сваркой:

  • Треугольник. Метод используется в случаях, когда соединяются заготовки с толщиной кромок до двух миллиметров. Его суть заключается в том, что передвижение снизу-вверх заставляет жидкий метал наплывать на уже застывший. Он довольно быстро застывает, не стекая на пол или на оператора. Шлак в этом случае перемещается под определенным углом, образуя некоторое подобие треугольника.
  • Елочка. Техника используется для сваривания стыков 2-3 мм в глубину. Передвижение электрода начинается у одной из кромок. Металл плавится по всей толщине, а дуга постепенно перемещается вглубь стыка.
  • Лестница. Оптимальный способ соединить две заготовки, между которыми большой зазор. Электрод перемещается от одной кромки к противоположной зигзагообразно.

Горизонтальный шов

Полуавтоматическая сварка дает возможность выполнить горизонтальные швы самого высокого качества вне зависимости от направления движения. Для получения высококачественного шва нужно учесть некоторые особенности:

  • нужно уравновесить силу тяжести капель расплавленного металла и силу горения электродуги;
  • важно выбрать оптимальную скорость перемещения электрода вдоль стыка;
  • чтобы контролировать расплав, следует выполнять сварочные работы непрерывно.

В некоторых случаях завершить шов одним проходом не удается. Тогда можно прибегнуть к технике, включающей периодическое гашение дуги. Можно использовать разные сварные рисунки на заготовках с кромками до 4 мм. Во всем остальном качество шва будет зависеть от опыта и мастерства сварщика.

Сварной горизонтальный шов создается за четыре этапа:

  1. Формирование корневого валика. Он выполняется короткой электрической дугой. Электрод по отношению к рабочей поверхности держится под углом 80 градусов. Первичный валик формируется, как правило, на максимальной силе тока.
  2. Наложение вторичного валика. Перед началом процесса устанавливается средняя сила тока. Выполняется валик за один проход электродом максимально большого диаметра. При формировании валика применяется технология углом вперед.
  3. Создание третьего валика. В зависимости от ранее полученных результатов для формирования валика третьего используется один из двух способов. Площадь вторичного валика большая – третий ложится по центру. Когда размеры вторичного соответствуют норме, то выполнение третьего этапа совершается в два подхода.
  4. Проверка качества работы.

Сварочные дефекты чаще всего образуются в верхней части шва. Поэтому следует внимательно следить за качеством работ на этом этапе.

Сварка тонкого металла полуавтоматом

В зависимости от типа металла сваривание может выполняться одним из двух способов:

  1. Обычные листовые заготовки свариваются любым способом.
  2. Тонкий заклепочный материал следует соединять внахлест. Проваривается через отверстия, которые в верхнем листе были предварительно подготовленные.

При выполнении работ нужно обращать особое внимание на некоторые нюансы:

  • скорость подачи проволоки, напряжение и сила тока снижаются до минимально допустимых параметров;
  • не допускается задержка электрической дуги в одном месте. Это может вызвать прожег заготовки или наплыв валика;
  • заклепочный материал желательно начать сваривать от центра нижней заготовки. В противном случае можно залить ранее подготовленные отверстия.

В случаях, когда герметичность не является обязательным условием, можно прибегнуть к точечному соединению. Расстояние между местами сварки может составлять от 1 до 5 сантиметров.

Сварка толстого металла полуавтоматом

Металл, имеющий толщину стенок более 4-х миллиметров, требует предварительной подготовки: снимаются фаски с обеих кромок. Это позволяет сформировать ровный и в то же время очень прочный шов.

При работе с толстыми заготовками следует выполнять горелкой колебательные движения, чтобы прогревалась большая площадь кромок. Производитель к сварочным полуавтоматам прилагает документацию, где содержится полезная справочная информация. Среди прочих данных есть и таблицы с рекомендованными параметрами для сваривания заготовок из толстого металла.

Основные правила выполнения работ:

  • зазор между кромками не должен превышать двух миллиметров;
  • ширина сварного шва должна соответствовать толщине металла;
  • выбирая расходные материалы, следует учитывать рекомендации производителя оборудования.

Если специалисту поставлена задача максимально хорошо проварить заготовку с толщиной свыше пяти миллиметров, то работу нужно выполнить в несколько подходов. Первым делом проваривается центр стыка. После этого деталь проваривается сверху и снизу. Сваривать заготовки желательно на открытой площадке или же в просторном хорошо вентилируемом помещении.

Полуавтоматическая сварка проволокой

Присадочные проволоки

При соединении металлов полуавтоматом с использованием присадочной проволоки необходимо учесть некоторые нюансы:

  • требуется соответствие по химическому составу между присадочным и свариваемым материалом;
  • проволока должна быть от проверенного производителя, то есть, качественной и сертифицированной;
  • должны быть соблюдены сроки и условия хранения присадки.

Так сложилось, что на производстве и в домашних условиях чаще всего нужно варить сталь или марганец. Именно для этих целей наиболее востребована проволока, которая поставляется для сварочных работ.

Для работы с черными металлами используются такие виды материала:

  • Св-08ГС. Применяется для легированной или низкоуглеродистой стали;
  • Св-08Г2с. Предназначена для работы с высокоуглеродистой сталью.

Очень часто для выполнения конструкций из черного металла применяется порошковая проволока. Материал выгоден тем, что дает возможность работать без подачи защитного газа в область сваривания. Не нужно тащить на объект баллон с инертным газом. Это важно, когда необходима скорость выполнения работ в сочетании с мобильностью: требуется быстро побывать на нескольких объектах.

Материал представляет собой трубку, изготовленную из низкоуглеродистой стали, полость которой наполнена специальным порошкообразным составом. Металл плавится, в результате чего освобождается порошок. В результате его горения создается газовое облако, которое и защищает рабочую зону от атмосферного воздуха. В подавляющем большинстве случаев в состав порошка включены металлическая пыль и рутил.

Для соединения нержавеющей стали применяется проволока Св.-06Х19Н9Т, Св.-01Х19Н9 или Св.-04Х18Н9. Эти материалы обеспечивают высокую прочность сварного шва. Для алюминиевых заготовок предназначена проволока СВ-АК5. Ее характерная особенность – оригинальный цвет шва.

Подготовка к процессу сварки

Требуется предварительная подготовка перед началом сварочных работ. Она состоит из четырех этапов:

  1. Создаются на кромках скосы или фаски.
  2. Поверхность очищается от загрязнений.
  3. Зона сваривания обрабатывается едким веществом, которое будет препятствовать быстрому образованию тугоплавкой пленки из оксида алюминия.
  4. Тефлоновый канал обрабатывается с целью уменьшения трения присадочной проволоки о его стенки.

Начинающий сварщик должен усвоить, что в любой ситуации перед началом работ помимо перечисленных нужно выполнить и такие манипуляции:

  • убрать с рабочего места ненужные на данный момент инструменты и другие предметы;
  • дать максимальный приток освещение на рабочее место;
  • разложить по местам необходимые для работы инструменты и вспомогательное оборудование;
  • проверить целостность кабеля и готовность к работе удлинителей.

После этого можно приступать к подготовке оборудования. Порядок выполнения манипуляций:

  • аккуратно разложить сварочный рукав;
  • проверить состояние сопла горелки;
  • подсоединить газовый баллон;
  • на столе закрепить соединяемые детали. Если работы выполняются непосредственно на конструкции, то обеспечить неподвижность свариваемых поверхностей доступными способами;
  • надеть спецовку и прочую амуницию сварщика;
  • дать питание на полуавтомат;
  • поднести горелку к стыку.

После выполнения работ

После выполнения работы необходимо:

  • перекрыть подачу проволоки и инертного газа;
  • отключить аппарат от источника питания;
  • позволить шву остыть;
  • внимательно осмотреть его и при обнаружении дефектов повторить сварку.

Полуавтомат дает возможность использовать разные типы присадочной проволоки.

Важно по максимуму применять доступные средства защиты. Полная экипировка состоит из таких функциональных компонентов:

  • Защита глаз. В идеале при выполнении сварочных работ использовать специальную маску. Допускается также одевать защитные очки или применять щиток.
  • Защита органов дыхания. Есть специальные фильтрующие маски, которые пригодятся в условиях плохой вентиляции или отсутствии таковой.
  • Защита от брызг. Избежать ожогов помогает специальный костюм, выполненный из жаропрочного материала.

Техника безопасности

Чтобы избежать травм следует соблюдать простые правила техники безопасности:

  • При выполнении работы следует постоянно находиться на деревянных подмостках.
  • Для освещения рабочего места использовать свет от источников питания в 12 вольт.
  • На высоте страховаться в обязательном порядке. Размер страховой бечёвки должен быть не менее двух метров.
  • Сварочные работы в закрытых помещениях выполнять только при наличии эффективной вытяжки. В случаях, когда вентиляция невозможна, сварщик должен использовать шланговый противогаз. При малой задымленности допускается работа в респираторе.
  • Строго запрещено брать свариваемые детали голыми руками.
  • На открытых площадках запрещена работа при выпадении осадков.

Заключение

Большинство профессиональных сварщиков хорошо знают особенности работы с полуавтоматическим оборудованием. Этому обучают в учебных заведениях, на курсах. Или же можно просто открыть инструкцию производителя и ознакомиться с основными аспектами. Современные технологии упростили сварочные полуавтоматы и теперь они стали доступны для любителей. Оборудование отлично зарекомендовала себя в быту и малом бизнесе.

Полуавтоматическая сварка в среде углекислого газа: преимущества и недостатки

Полуавтоматическая сварка в среде углекислого газа дает возможность соединить металлические детали. Сварочный шов при использовании такой сварки отличается высокой прочностью. Поэтому сваривание металлов с использованием углекислого газа широко востребовано как у новичков, так и у профессионалов.

Что такое сварка полуавтоматом в среде СО2?

Принцип действия полуавтоматического спаивания с использованием углекислого газа достаточно прост. Одновременно с электродом в сварочную ванну подается СО2. Газ заполняет ванну, тем самым защищая металл от негативного влияния воздуха.

Режимы и особенности сварки в углекислоте

Основной особенностью сварки в среде СО2 является вытеснение воздуха при сваривании частей. Это позволяет добиться высокого качества шва. Необходимо учитывать, что железо и углерод, находящиеся в составе заготовок, вступая в химическую реакцию с СО2, окисляются. Для предотвращения окисления следует использовать специализированную проволоку, имеющую в своем составе большое количество кремния и марганца.

Технология накладывания сварного шва в углекислоте

Еще одной особенностью полуавтоматической сварки в газовой среде является возможность применения как прямой, так и обратной полярности. Использование обратной полярности прямого тока отлично подходит для начинающих сварщиков. Такой метод дает возможность легко удерживать дугу. Прямая полярность применяется при необходимости наплавления металла.

Сварка полуавтоматом возможна в различных режимах. Настройку аппарата необходимо производить исходя из толщины металла свариваемых деталей и диаметра проволоки. При повышении сварочного тока увеличивается глубина провара. Так, чем больше толщина металлических частей, тем большую силу тока необходимо установить в настройках.

Характеристики сварки в углекислом газе

Газ, применяемый для сваривания полуавтоматом, имеет более высокую плотность, чем воздух. Благодаря этому он вытесняет воздушную массу из сварочной ванны. Он бесцветен и не имеет запаха. К аппарату СО2 подается из баллона, в котором он находится в жидком состоянии под давлением. Подключение баллона осуществляется через специализированный редуктор. Он поддерживает требуемое давление в системе.

Спаивание в среде СО2 можно выполнять на двух видах оборудования:

  • Выпрямитель. Полуавтоматический аппарат, применяется для дугового сваривания различных заготовок, в том числе и из нержавеющей стали.
  • Инвертор. Является преобразователем переменного тока в постоянный. Преобразованный ток используется для создания дуги.

Электродом при выполнении полуавтоматической сварки в среде углекислого газа является специализированная проволока. В зависимости от толщины деталей, диаметр и состав проволоки может отличаться.

Подготовительные работы

Для того чтобы получить качественный шов, необходимо подготовить заготовки и настроить оборудование. Спаиваемые части следует предварительно очистить от ржавчины, окислений, лакокрасочных покрытий и т. д.

Настройка оборудования перед работой

Окислы и посторонние примеси могут привести к разбрызгиванию электрода и нарушению качества сварного шва. Для очистки используется наждачная бумага, абразивный камень или пескоструйная обработка. При сваривании тонких листов следует предварительно отбортовать кромки заготовок.

Помимо подготовки деталей перед началом сварки полуавтоматом в среде СО2, необходимо настроить оборудование. Все составляющие подключаются в строгом соответствии с определенной схемой. Для нормальной работы устройства нужно исключить утечку вещества из системы.

После включения полуавтомата в электрическую сеть осуществляется его настройка. В зависимости от толщины металла устанавливается сила тока. При выборе скорости подачи электрода нужно опираться на скорость горения сварочной дуги.

Перед началом работы нужно изучить правила техники безопасности во время выполнения сварочных работ полуавтоматическим сварочным аппаратом в среде углекислого газа. Во время работы используются специализированные средства индивидуальной защиты.

ВНИМАНИЕ: Пренебрежение правилами безопасности может привести к различного рода травмам, ожогам или поражению электричеством!

Технология и методы выполнения работ

После подготовки деталей и правильной настройки оборудования можно приступать к выполнению сварочных работ. При спаивании в среде углекислого газа начальный шов лучше осуществлять при небольшой силе тока. Таким образом удастся избежать деформации спаиваемых заготовок и вероятности возникновения трещин. Подача электрода, независимо от полярности, осуществляется двумя способами:

  • Углом вперед. С использованием такого метода глубина провара будет небольшой, а шов — широким;
  • Углом назад. Применяя такой метод, сварщику удается добиться большой глубины провара при малой ширине шва.

Как правильно варить полуавтоматом в углекислоте

По окончании работ сварочная ванна заполняется металлом из проволоки. После того как шов положен, подача проволоки прекращается. Электричество, подаваемое на электрод, следует отключить. Углекислоту, в отличие от напряжения, нужно подавать до полного затвердевания шва. Это дает возможность защитить металл, находящийся под воздействием высокой температуры, от негативного влияния воздушных масс.

После полного затвердевания шва металл кристаллизуется и происходит образование шлака. Для контроля над качеством спаивания необходимо удалить шлак. После остывания он становится хрупким и легко очищается.

Контроль качества спаивания металла

Расход СО2

Расход газа при спаивании в среде газа СО2 прямо зависит от толщины металлических заготовок, диаметра проволоки и силы тока. На расход влияют и другие факторы. Если работы выполняются на открытом воздухе, то расход газа будет гораздо больше, чем при сваривании в закрытом помещении. Это связано с тем, что ветер сдувает часть газа, подаваемого в сварочную ванну.

Увеличение производительности при работе в среде СО2

Выполняя сварочные работы полуавтоматическим аппаратом в среде углекислого газа, можно повысить производительность несколькими способами:

Увеличить силу тока

При нижнем положении сварки можно увеличить сварочный ток, тем самым повысив КПД. При вертикальном или потолочном положении шва силу тока можно увеличивать только при ускоренной кристаллизации металла.

Увеличение вылета электрода

При применении тонкой проволоки можно повысить производительность, увеличив ее вылет. Такой метод дает возможность повысить скорость плавления электрода. Это увеличивает количество металла, попадающего в сварочную ванну за определенный промежуток времени.

При увеличенном вылете электрода может возникнуть самопроизвольная подача проволоки. Во избежание этого нужно использовать специализированные наконечники. Они изготавливаются из фарфора или керамики.

Преимущества и недостатки

Сварка в углекислом газе СО2 имеет ряд преимуществ. К ним относятся:

  • Возможность спаивать тонкие листы металла;
  • Хорошая дуга при выполнении работ. Это особенно удобно для начинающих сварщиков;
  • Возможна сварка деталей с различными характеристиками;
  • Металл, находящийся под действием высокой температуры, защищен от влияния воздуха. Это делает шов прочным и не допускает окислений;
  • Высокое качество места соединения заготовок;
  • Безопасность в использовании;
  • Доступность. Приобрести оборудование может любой желающий.

К недостаткам полуавтоматической сварки в среде углекислого газа можно отнести то, что применяемое оборудование более сложное, чем в случае с другими газами.

Из вышеперечисленного следует, что сварка в среде СО2 является доступным способом соединения металлических деталей. Такой способ спаивания отличается высоким качеством и простотой в применении.

Видео: Как настроить давление защитного газа и его расход

Полуавтоматическая сварка в среде углекислого газа: технология, оборудование

Полуавтоматическая сварка в среде углекислого газа является уникальным методом, который позволяет быстро соединить металлические элементы огромных конструкций. При помощи данной технологии можно получить качественный шов, который сохраняет структуру на протяжении длительного времени.

Это связано с тем, что во время проведения сварочного процесс свариваемая поверхность находится под максимальной защитой, в нее не проникают оксиды кислорода из окружающей среды, которые могут снизить прочность сварных слоев шва. Но все же перед тем как приступать к работе стоит рассмотреть основные особенности и нюансы.

Особенности технологии

Технология полуавтоматической сварки в среде углекислого газа сопровождается сложными химическими реакциями. Принцип процесса состоит в следующем - в область сварной ванны из баллона подается углекислый газ, который разделяется на угарный газ и кислород. Данный процесс осуществляется под влияние повышенной температуры, которая исходит от электрической дуги.

Важно! Угарный газ отлично подходит для защиты металлических поверхностей от окисления, но смесь из углекислого газа и кислорода вызывает выгорание легированных добавок и углерода из свариваемых элементов. Это в итоге может привести к ухудшению качества шва, образованию большого количества пор.

По этой причине для нейтрализации углекислоты применяется присадочная проволока. В среде газов обычно применяется присадочный материал из кремния и марганца.

По сравнению с другими методами сваривания сварка ТИГ углекислым газом обладает следующими характерными особенностями:

  1. Данная разновидность сваривания элементов из металла производится на токах с обратной полярностью. Это позволяет получить более стабильную дугу, предотвращает деформирования.
  2. Благодаря тому, что во время сварочного процесса применяется специальный электрод, происходит снижение эффекта разбрызгивания расходного материала. За счет этого снижаются непроизводительные затраты.
  3. Во время наплавки металла можно применять прямую полярность тока. Это повышает производительность и эффективность полуавтоматического сварочного процесса почти в 1,6-1,8 раза.

Преимущества и недостатки

Полуавтоматическая сварка в углекислом газе имеет главное преимущество - отличное контролирование сварочного процесса. За счет применения защитного газа оператор может отлично видеть горение дуги, он наблюдает за полной технологией варки металлических элементов.

Сварка полуавтоматом в среде углекислого газа имеет другие немаловажные положительные качества:

  • полноценное применение энергии электрической дуги, которая обеспечивает отличную скорость варочного процесса;
  • сварные швы имеют высокое качество, хорошую прочность;
  • возможность производить сваривание в разных пространственных положениях;
  • сниженное потребление сварщиком газа при сварке полуавтоматом;
  • сжиженный углекислый газ обладает низкой стоимостью;
  • при помощи этого вида сварочной технологии можно производить соединение металлических деталей с любой толщиной;
  • сварочные работы могут с легкостью выполняться на весу;
  • наблюдается высокая производительность труда;
  • при проведении сварочного процесса практически отсутствует повреждение металлических элементов;
  • полуавтоматическая сварка может применяться при проведении ремонта конструкций разных размеров;
  • нет необходимости постоянно подавать и отводить флюс.

Но сварочный процесс в углекислой среде имеет несколько отрицательных особенностей:

  • подаваемые углекислотные смеси имеют низкое качество;
  • по сравнению с процессом, при котором применяются аргоновые смеси, качество швов получается слабее;
  • не подходит для работы со всеми видами металла;
  • после применения углекислоты могут возникать сложности в очищении используемого оборудования;
  • если будут выставлены неправильные параметры сварки, то может проявляться серьезное изнашивание комплектующих элементов аппаратуры.

Используемое оборудование

Перед началом процесса стоит рассмотреть необходимое оборудование для полуавтоматической сварки в среде углекислого газа. Оно должно включать следующие важные компоненты:

  1. Основным компонентом является источник постоянного тока. В качестве него может выступать сварочный трансформатор или инвертор.
  2. Газовый баллон, он должен вмещать 40 литров. Этот объем позволит уместить около 25 кг.
  3. Подающий механизм. Особой популярностью пользуется модель А-547-У. Механизм подачи находится в компактном чемоданчике из металла, который можно с легкостью переносить с собой.
  4. Промежуточный элемент между баллоном и горелкой - осушитель.
  5. Горелка с комплектом шлангов, кабелей.

Настройка и подключение оборудование

Важно! Сварка полуавтоматом в среде углекислого газа для начинающих обязательно должна сопровождаться подготовительным этапом, он должен проводиться в первую очередь. От его соблюдения зависит получение качественного и прочного сварного шва.

Перед тем как будет начата сварка TIG с использованием углекислоты, стоит выполнить следующие действия:

  • вставляется присадочная проволока;
  • производится проверка подающих роликов. Все компоненты должны быть совместимы с применяемым присадочным материалом;
  • проволоки устанавливаются в соответствующую борозду;
  • фиксируется регулирующий валик;
  • подающий рукав разлаживается;
  • сопла и наконечник снимаются;
  • обязательно проверьте, чтобы присадочная проволока вышла из горелки на 10-15 см;
  • наконечник и сопло надеваются;
  • полуавтомат для сварки в среде углекислого газа соединяется с баллоном, в котором содержится газ в сжиженном виде. Он подсоединяется через редуктор;
  • при помощи хомутов производится фиксирование подводящего шланга.

После этого можно приступать к сварочному процессу. Предварительно производится полное очищение свариваемых кромок - обязательно удаляются загрязнения, окалины (для этих целей можно воспользоваться дробеструйной или пескоструйной установкой). Предварительное приваривание в нескольких местах может производиться при помощи электродов Э42 или Э42А.

Чтобы углекислый сварочный процесс производился правильно к нему стоит тщательно подготовиться. На начальном этапе стоит внимательно рассмотреть все его основные особенности и правила. Обязательно подготовьте требуемое оборудование для сварки в среде углекислого газа, которое должно состоять из полуавтомата и других комплектующих элементов. Правильное использование аппарата и соблюдение нюансов в итоге позволит получить прочное и долговечное сварное соединение.

Интересное видео

Как варить полуавтоматом с углекислотой

Сварка в среде нейтрального газа является надёжным и прочным соединением заготовок в одно целое. Стоимость углекислоты по отношению к аргону и гелию значительно ниже и это улучшает соотношение цены и качества работы. Необходимо знать, как правильно варить полуавтоматом с углекислотой, добиваясь при этом хорошего качества шва. Можно варить, используя смеси газов, когда необходимо повышенное качество, а можно обучиться сварке в углекислотной среде с использованием полуавтомата и регулируемой подачи сварочной проволоки. Мы расскажем подробно об этом процессе, позволяющем сэкономить немалые средства и добиться необходимого результата.

Способы сварки в защитной среде

Сварка с регулируемой полуавтоматической подачей проволоки в среду воздействия дуги короткого замыкания, может происходить в активном газовом составе или же в инертном, препятствующем окислению в зоне соединения заготовок. Углекислый газ изолирует сварной шов от воздействия кислорода и придаёт эластичность и прочность месту стыка деталей.

Использование полуавтоматических инверторов придало новый качественный уровень процессу соединения заготовок и большие возможности ремонта дефектных узлов и деталей. Это особенно важно при сварке различных сплавов алюминия, титана и нержавеющих и легированных сталей.

Итак, как варить полуавтоматом и какие методы при этом используются в наше время? Наиболее популярными способами соединения металлов в инертной газовой среде являются схемы с использованием защитной оболочки, которая препятствует окислению, свариваемых металлов или сплавов.

В настоящее время используются наиболее активно следующие способы:

  • соединение металлов и сплавов методом TIG с применением чрезвычайно тугоплавкого вольфрамового электрода в среде инертного газа и ручной подачей необходимой присадочной проволоки в сварочную ванночку;
  • метод MIG/MAG, позволяющий осуществлять полуавтоматическую, регулируемую подачу сварочной проволоки в зону дуги короткого замыкания под действием защитного газа.

Нужно отметить, что метод TIG более дешёвый, но менее технологичный, поскольку при нём необходима ручная подача сварочной проволоки в ванночку тогда, как при способе MIG/MAG подразумевается полуавтоматический процесс. Инверторы MIG/MAG позволяют сваривать огромное количество материалов с помощью устройства автоматической, регулируемой подачи сварочной проволоки различного состава в зону действия дуги короткого замыкания. Этот процесс происходит с помощью протяжки проволоки со встроенного барабана через еврорукав и горелку непосредственно в зону сварки.

Эта совершенная схема позволяет задействовать электрическую цепь задержки подачи импульсного тока на проволоку, являющуюся электродом, после подачи защитного газа. Горелка снабжается насадками, которые позволяют подавать проволоку разного диаметра в зону воздействия сварочного тока с необходимой скоростью.

Важно отметить, что состав и диаметр сварочной проволоки завит от толщины и состава заготовок и подбирается индивидуально для каждого процесса.

Преимущества и недостатки сварки в углекислотной среде

У сварки этим методом, как и всяким другим, есть свои преимущества и недостатки, которые облегчают выбор в пользу наилучшего варианта по цене и качеству работы. Чтобы понять, как правильно варить полуавтоматом с углекислотой, необходимо оценить перспективы использования именно этого метода, заключающиеся в следующем:

  1. стоимость углекислоты ниже стоимости аргона или смеси инертных газов;
  2. качество сварки сравнимо с использованием инертных газов;
  3. производительность и узкая зона температурного воздействия позволяет сваривать тонкий листовой металл и всевозможные сплавы;
  4. примеси приводят к образованию шлака, который легко удаляется после застывания шва.
  5. отсутствие чувствительности ко многим загрязнениям заготовок;
  6. высокая чистота углекислого газа до 99%, что обеспечивает высокое качество сварочного шва;
  7. подача проволоки необходимого для сварки состава в зону плавления с регулируемой скоростью;
  8. после очистки от шлака имеется возможность повторного прохождения шва с целью увеличения его прочностных характеристик.

Как и у каждого метода, у углекислотной сварки имеются и некоторые недостатки, прежде всего связанные с химическим составом среды, в которой происходит соединение металлов, они заключаются в следующем:

  • углекислотная сварка уступает по качеству работе в среде инертных газов;
  • шов получается более пористым и требует дополнительной очистки;
  • подача газа требует экспериментальной настройки;
  • выбор проволоки корректируется к условиям сварки в углекислоте.

Химический состав проволоки зависит от реакций, происходящих в зоне горения дуги короткого замыкания, и требует особо тщательного согласования состава свариваемых заготовок с составом присадочного материала. Но недостатки носят временный характер и обусловлены привыканием к неоднозначному процессу. В целом подбор проволоки типа СВ-08 ГС или же СВ-08ХГСМФ полностью решает проблему свариваемости заготовок. В дальнейшем процесс зависит от скорости сварки, величины тока и согласования состава деталей и проволоки, подаваемой в зону плавления металла. А это приходит только с опытом и обучением, как и подбор вылета проволоки в сварочную ванночку.

Крайне важен квалифицированный подбор состава проволоки при сварке в углекислоте, поскольку физико-химический процесс термического воздействия на шов, сильно влияет на качество соединения металлов и сплавов.

Порядок действия и технология работ при сварке углекислотой

Необходимость подготовки заготовок заключается в зачистке будущего шва от оксидной плёнки, загрязнений и формирования краёв для наилучшего соединения деталей. Практически толщина металла также влияет на выбор особого режима сварки, например, при толщине металла в 1,5−2 мм диаметр сварочной проволоки подбирается в диапазоне от 0,8 до 1,2 мм.

При толщине деталей от 3 до 8 мм, диаметр проволоки равен от 1,2 до 1,6 мм, а сварочный ток колеблется от 90 А до 250 А. Напряжение сварочной дуги меняется от 18 до 30 В, а скорость подачи проволоки зависит от качественного процесса сварки и колеблется от 150 м/час до 500 м/час.

Весь процесс крайне индивидуален и настраивается экспериментально вплоть до расхода газа и вылета проволоки в зоне действия углекислоты. Важно соблюдать следующие принципы:

  • обеспечить правильный подбор силы тока для сварки в углекислотной среде;
  • выставить скорость подачи соответствующей проволоки в зону сварочной ванночки;
  • обеспечить подготовку заготовок для наилучшего сочленения в зоне шва;
  • выставить оптимальную подачу газа в зону сварочной дуги короткого замыкания;
  • проверить герметичность соединений во избежание утечки углекислоты.

После проведения этих процедур необходимо опробовать качество и скорость сварки на пробных деталях, и отредактировать параметры действия схемы сварочного процесса. При большой толщине заготовок первый шов необходимо вести с малым током, а при повторном прохождении увеличивать силу тока пропорционально скорости движения горелки.

Провар вертикального шва должен проходить снизу вверх для обеспечения последовательного затвердения нижней части соединения металла, при этом расход углекислого газа следует немного увеличить. Расход газа может колебаться в зависимости от условий процесса от 5 л/мин до 20 л/мин. Последовательность проходящего движения руки сварщика при полуавтоматическом процессе в ореоле углекислого газа должна напоминать нанесение чешуек расплавленного металла на поверхность шва.

Очень важно, особенно в труднодоступных условиях соблюдать правила техники безопасности и пользоваться защитными средствами и сварочной маской, а также соблюдать осторожность при использовании углекислого газа.

Итог

Подводя итоги, нужно сказать, что сварка полуавтоматом в среде углекислого газа является практически полноценной заменой инертным газовым средам, но при этом обходится значительно дешевле. Практическое применение этой схемы работы вынуждает более внимательно относиться к технологическому процессу сварки деталей и узлов, которое мало отличается от сварки в среде аргона или гелия. Мы постарались максимально подробно рассказать об этом виде деятельности.

как и где используется, настройка расхода и режима

В настоящее время полуавтоматическая сварка с помощью углекислого газа используется как специалистами, так и сварщиками - новичками.

В этой статье Вы почерпнете для себя много полезного о работе с углекислотой, о её достоинствах, таких как защита сварного шва от негативного воздействия частиц в воздухе, повышения качества выполненной работы, и не только.

Содержание статьиПоказать

Что такое сварка полуавтоматическим сварочным аппаратом в среде СО2?

Итак, давайте же узнаем, как же работает способ сваривания полуавтоматом с углекислотой. Воздействие высокой температуры в процессе сварки способствует частичному распаду углекислого газа на кислород и углерод.

Такой химический процесс благоприятно влияет на итоговый результат, защищая сварочное место (так называемая сварочная ванна) от различных вредных примесей в воздухе в вашей рабочей зоне.

Еще стоит отметить отличное взаимодействие этих трёх газов с железом, что еще больше увеличивает качество сварочного шва.

Основной недостаток углекислого газа – его свойство окислять свариваемый металл, тем самым ухудшая качество проделанной работы.

С этим недостатком достаточно просто и эффективно бороться добавляя в состав проволоки для сварки полуавтоматом большое количество кремния и марганца.

Здесь начинают действовать положительные химические свойства оксидов этих элементов, выделяющиеся в процессе сварки. Их взаимодействие с поверхностью металла способствует формированию надежного сварочного соединения, устойчивого к оксидированию.

Для сварки углекислотой используйте полуавтоматический сварочный аппарат, при этом выбирать его режим работы вы можете сами, опираясь на свой опыт, либо пользуясь рекомендуемыми параметрами из таблицы 1.

Из нее видно, что основной критерий выбора режима работы – толщина свариваемого металла.

Таблица 1 – Параметры настройки полуавтоматического сварочного аппарата с углекислотой:

Достоинства сварки на углекислом газе

Итак, мы уже узнали принцип сварки полуавтоматом с углекислотой, а также как справляются с его главным недостатком.

Теперь давайте посмотрим на основные достоинства этого метода по сравнению с его конкурентом – флюсовой сваркой:

  • качество сварного соединения выше, даже у начинающих осваивать эту деятельность;
  • скорость работы быстрее в 2-3 раза благодаря равномерному тепловому рассеиванию от сварочной дуги, а следовательно производительность труда намного выше;
  • возможность варить даже тонкий металл, не боясь ухудшить качество шва;
  • на месте сваривания полуавтоматом не остается остатков флюса и шлака, на случай многослойной сварки металла, это преимущество придется как нельзя кстати;
  • отсутствие флюса, а значит ничего не мешает визуальному контролю сварочной дуги;
  • качество наплавки с использованием углекислого газа выше, чем с флюсом;
  • вы можете проводить паяльные работы в любом пространственном положении, любой сложности (в том числе работы на весу и под углом) без использования планок, подставок, подкладок и пр.;
  • экономичность метода и огромная выгода с точки зрения капиталовложения;
  • не надо приобретать оснащение для удаления и подачи флюса во время сварочного процесса;
  • в два раза дешевле себестоимость металла, используемого под наплавку, в сравнении с другими методами;
  • сама по себе углекислота имеет относительно низкую цену, что также уменьшает общую стоимость работ.

Полуавтоматическая сварка на углекислотном газе нашла свое место в судовом строении, машиностроении, при сварке систем отопления и водопровода, в производстве изделий из легированной стали или термостойких металлов, в случаях труднодоступности места сваривания и когда необходимо провести быстрый ремонт и наплавку.

Проще говоря, этот метод применяется в серийной промышленности и производствах, а не только в условиях гаражной самодеятельности.

Сваривание полуавтоматом в углекислоте заслуженно получила такую популярность благодаря совокупности своих преимуществ, но теперь давайте разберем в каких материалах она нуждается.

Компоненты для углекислотного сваривания

Баллон для хранения углекислоты

Проволока для сварки полуавтоматом. Применяется как электрод. Для каждого случая, в зависимости от того какой металл мы будем паять, проволоку необходимо выбирать индивидуально.

Отталкиваясь от толщины свариваемого металла, мощности полуавтомата и его прочих особенностей, диаметр проволоки может изменяться в диапазоне от 0.5 до 3 мм. На практике лучший результат показывает медная проволока, её мы и рекомендуем использовать.

Пускать в дело необходимо исключительно чистый материал, без следов ржавчины, коррозии, загрязнений, которая хранилась в надлежащих условиях.

В противном случае эту проволоку использовать нельзя, если вы не хотите в результате получить плохое качество соединения. Рекомендуется вымачивать проволоку в серной кислоте, а после несколько часов удерживать при высокой температуре.

Углекислый газ СО2. Собственно, наш главный гвоздь программы и самый важный компонент. Углекислота для сварки полуавтоматом безвредна для человека и бесцветна.

Перемещается и хранится СО2, как правило, под давлением в специальных черных емкостях и с одноименной маркировкой. Вот несколько практических и просто полезных советов по эксплуатации:

  • для особо важных и сложных работ используйте емкость с 99%-ым содержанием диоксида углерода, в остальных случаях ёмкостей с 98%-ым содержанием будет предостаточно;
  • учтите, что излишняя влага отрицательно скажется на общем качестве сваривания. Чтобы от неё избавиться, поставьте ёмкость в вертикальное положение на один час, за это время влага осядет на дно;
  • перед началом сварки полуатоматом выпустите немного газа из ёмкости, чтобы избавится от, вредных для сварки, примесей азота, содержащиеся в ней.

Выводы

Итого, сварка полуавтоматическим сварочным аппаратом в среде СО2 – это набор сплошных преимуществ, например повышение производительности труда, расширение ваших профессиональных умений, а результатом работы вы будете всегда довольны.

У новичков на первых этапах освоения конечно могут наблюдаться проблемы с чрезмерным расходом газа, но и этот недостаток нивелируется его достаточно низкой ценой, а с приобретенным опытом, когда вы освоите принципы работы этого метода, такая проблема исчезнет вовсе.

Немного терпения, опыта в сварочном деле, наличие полуавтомата, углекислоты, всех необходимых материалов и Вы полностью готовы к покорению этого метода.

Профессиональный опыт приобретается на практике, поэтому экспериментируйте и тренируйтесь сами с разными режимами работы, набивая руку, а не уповайте на табличные данные, этот опыт очень важен, если вы хотите стать профессиональным сварщиком.

Спрашивайте советов у профессионалов - сварщиков и не забывайте соблюдать технику безопасности. Желаем успехов!

Конверсия углекислого газа в метанол: возможности и фундаментальные проблемы

1. Введение

В настоящее время спрос на энергию быстро растет из-за экономического роста во всем мире. Чтобы удовлетворить этот растущий спрос, необходимо большое количество ископаемого топлива (нефть, уголь и природный газ) [1]. Сжигание ископаемого топлива часто рассматривается как одна из основных угроз для окружающей среды из-за выброса CO 2 в атмосферу. CO 2 , который считается первичным парниковым газом (ПГ), периодически обменивается на поверхности суши, океана и атмосферы, где различные существа, включая животных, растения и микроорганизмы, поглощают и производят его ежедневно.Тем не менее, процесс выделения и потребления CO 2 должен быть сбалансирован по своей природе. С 1750 года, когда началась промышленная революция, изменилось изменение климата в связи с деятельностью, связанной с промышленностью. Чтобы сократить выбросы парниковых газов, процессы секвестрации и хранения CO 2 (CSS) получили широкое внимание. Однако это увеличит количество доступного уловленного CO 2 в качестве сырья с нулевой стоимостью. Таким образом, использование CO 2 и преобразование его в топливо и химические вещества, которое называется процессом улавливания и рециркуляции углерода (CCR), является активным вариантом, используемым во всем мире для преобразования пригодных для использования продуктов в ценные продукты, и он используется для уменьшения выбросов CO 2 выбросов, что более предпочтительно по сравнению с вариантом CSS [2, 3, 4, 5].В последние годы преобразование CO 2 в химикаты с добавленной стоимостью (например, этанол, метанол и муравьиную кислоту) с использованием различных способов привлекло большое внимание исследователей, так как его можно рассматривать как решение для сокращения глобального потепление [6, 7, 8], энергетический кризис (т. е. истощение ископаемых видов топлива) [9, 10, 11] и проблемы хранения энергии [12]. Метанол - это возобновляемый источник энергии, который можно производить из любого сырья, содержащего углерод (в основном, CO 2 ), а также это чистый источник энергии, который можно использовать в качестве транспортного топлива.В целом, чтобы топливо удовлетворяло рыночный спрос, оно должно быть экологически безопасным, чистым и способным синтезировать из доступных ресурсов. Фактически, в настоящее время большинство производственных компаний по всему миру используют метанол в качестве сырья для производства различных продуктов. Метанол используется для производства таких растворителей, как уксусная кислота, на которые приходится 10% мирового спроса [13]. Метанол также может использоваться в топливных элементах с прямым метанолом (DMFC), которые используются для преобразования химической энергии метанола непосредственно в электрическую энергию в условиях окружающей среды [14].Метанол считается одним из важнейших видов органического сырья, которое может использоваться в отраслях промышленности с годовым объемом производства 65 миллионов тонн во всем мире [15]. Однако термин «экономика метанола» включает антропогенный углеродный цикл для производства метанола, как показано на рисунке 1, который можно использовать в качестве возобновляемого топлива или для производства почти всех продуктов, полученных из ископаемого топлива [16, 17]. Завод Джорджа Олаха компании Carbon Recycling International (CRI) считается крупнейшим в мире заводом по производству метанола с CO 2 .В 2015 году компания Carbon Recycling International (CRI) увеличила мощность завода с 1,3 миллиона литров метанола в год до более чем 5 миллионов литров в год. Сейчас завод перерабатывает 5,5 тыс. Тонн CO 2 в год. Вся энергия, используемая на станции, поступает из исландской сети, которая вырабатывается за счет геотермальной и гидроэнергии [18]. Как показано на Рисунке 2, установка использует электричество для производства H 2 , который вступает в реакцию с CO 2 в каталитической реакции производства метанола.Различные пути и процессы превращения CO 2 в метанол схематично описаны на рисунке 3. Существуют различные пути превращения CO 2 , такие как каталитический метод, который осуществляется в форме обычного, электрокаталитического, фотокаталитического и фотоэлектрокаталитического преобразования [ 19].

Рисунок 1.

Антропогенный углеродный цикл для производства метанола [20].

Рис. 2.

Производство зеленого метанола компанией Carbon Recycling International [18].

Рисунок 3.

Схема процессов химической конверсии СО2.

2. Методы преобразования CO 2 в метанол

2.1. Химическая конверсия

Каталитическое гидрирование CO 2 с H 2 считается наиболее простым способом получения метанола и ДМЭ из CO 2 , как показано в уравнении. (1). В течение 1920-х и 1930-х годов в США работали первые заводы по производству метанола, которые использовали CO 2 и H 2 для производства метанола.Системы как гетерогенных, так и гомогенных катализаторов изучались многими исследователями для процесса гидрирования CO 2 . Однако гетерогенные катализаторы имеют много преимуществ с точки зрения разделения, стабильности, обращения, стоимости и рециркуляции катализатора. Системы гетерогенных и гомогенных катализаторов обсуждаются в следующих разделах [21, 22, 23].

CO2 + 3h3↔Ch4OH + h3O∆h398K = −11,9 ккалмольE1

2.1.1. Гетерогенная каталитическая конверсия

Хотя гомогенный катализ также используется для производства метанола из CO 2 , гетерогенный катализ является предпочтительным выбором для инженеров-химиков из-за преимуществ гетерогенного катализа.Это включает в себя легкое отделение жидкости от твердого катализатора, удобство обращения с реакторами различных типов (т.е. с неподвижным, псевдоожиженным или подвижным слоем), а также возможность регенерации использованного катализатора. В последнее время было проведено большое количество экспериментов по разработке стабильных и эффективных гетерогенных катализаторов восстановления CO 2 с получением метанола. Однако многие исследования доказали, что катализаторы на основе меди с различными добавками, такими как ZrO 2 и ZrO, играют важную роль в повышении стабильности и активности гетерогенного катализатора (рис. 4).Таким образом, некоторые из катализаторов, показанных на рисунке 4, уже существуют и используются на демонстрационных и пилотных установках. Некоторые металлы (например, Cu и Zn) и их оксиды были разработаны для использования в качестве эффективных гетерогенных катализаторов для превращения CO 2 в метанол [24, 25]. Этот тип катализатора аналогичен катализаторам на основе Cu / ZnO / Al 2 O 3 , которые используются для производства метанола в промышленности. Однако было доказано, что коммерческий метанольный катализатор, такой как гетерогенная смесь оксида цинка, оксида алюминия и меди (30, 10 и 60%, соответственно), производит очень небольшое количество метанола [26].В различных обзорах обсуждались различные факторы, которые могут влиять на производство метанола из синтез-газа, такие как приготовление катализатора, конструкция катализатора, кинетика реакции, конструкция реактора и дезактивация катализатора [22, 27, 28, 29, 30]. Следовательно, будущие исследовательские работы должны быть сосредоточены на производстве метанола из CO 2 и H 2 , в которых количество метанола, полученного таким способом, выше по сравнению с синтез-газом. Чтобы поддерживать высокую производительность установки, катализатор должен оставаться активным в течение нескольких лет.Более того, улучшение активности и стабильности катализатора с течением времени очень важно для экономики любого завода по производству метанола [31]. Недавно Lurgi, лидер в области технологий синтеза метанола, сотрудничал с Süd-Chemie, используя высокоактивный катализатор (C79-05-GL, на основе Cu / ZnO) для преобразования CO 2 и H 2 в метанол [24, 32]. Метанольный реактор Lurgi представляет собой конвертер на основе трубок, который содержит катализаторы в неподвижных трубках и использует контроль давления пара для достижения контролируемой температуры реакции.Этот тип реактора может обеспечить низкий коэффициент рециркуляции и высокий выход. Поэтому Lurgi была разработана как двухступенчатая конвертерная система, в которой используются два объединенных реактора Lurgi для высоких мощностей по метанолу. Однако объемные скорости и температуры в первом конвертере будут выше, чем в одноступенчатом конвертере, в котором требуется только частичное преобразование синтез-газа в метанол. Это делает конвертер меньше и производит пар под высоким давлением из-за высоких температур, что помогает снизить затраты на электроэнергию.Газ, выходящий из первого конвертера, содержит метанол, и он будет направлен непосредственно на вторую стадию реакции, которая работает с более низкой скоростью реакции [31]. Даже если рабочая температура системы Lurgi составляет около 260 ° C, что выше, чем температура, используемая для обычных катализаторов для производства метанола, селективность этой системы по метанолу превосходна. Однако активность этого катализатора снижается с той же скоростью, что и активность коммерческого катализатора, который в настоящее время используется в промышленности для производства метанола.Есть разные компании, продающие высокостабильные катализаторы для производства метанола, такие как Mitsubishi Gas Chemical, Sinetix и Haldor Topsøe. Arena et al. [33] изучили твердотельные взаимодействия, функциональность и центры адсорбции катализаторов Cu – ZnO / ZrO 2 и его способность превращать CO 2 в метанол. Данные характеризации показали, что сильное взаимодействие Cu – ZnO эффективно способствует диспергированию металлической меди и ее реакционной способности по отношению к кислороду. Граница раздела металл / оксид в катализаторах Cu – ZnO / ZrO 2 играет важную роль в гидрировании CO 2 до метанола.Как показано на рисунке 5, двухцентровая природа реакционного пути объясняет формально нечувствительный к структуре характер конверсии CO 2 на катализаторах Cu – ZnO / ZrO 2 .

Рис. 4.

Подложки и добавки, используемые для катализаторов на основе меди.

Рис. 5.

Гетерогенно-каталитический процесс превращения CO2 в метанол с использованием Cu / ZrO2 и Cu-ZnO / ZrO2 [33].

2.1.2. Гомогенная каталитическая конверсия
2.1.2.1. Гомогенные катализаторы для CO 2 Гидрирование с получением метанола

Хотя различные гетерогенные катализаторы были испытаны для прямого превращения CO 2 в метанол, в литературе упоминается очень ограниченное количество гомогенных катализаторов.Tominaga et al. [34] сообщили о примере прямого превращения CO 2 в метанол с использованием гомогенных катализаторов. Они исследовали способность предшественника катализатора Ru 3 (CO) 12 в присутствии добавки KI для гидрирования CO 2 образовывать метан, метанол и CO. Кроме того, теми же авторами было доказано, что производительность Ru 3 (CO) 12 –KI для конверсии CO 2 намного лучше, чем у других карбонильных катализаторов переходных металлов, таких как W (CO) 6 ,, Fe 2 (CO) 9 , Ir 4 (CO) 12 , Mo (CO) 6, Co 2 (CO) 8 и Rh 4 (CO) 12 [35].В последнее время для восстановления CO 2 до метанола вместо шестиэлектронного процесса был использован каскадный процесс [36]. Каскадный процесс с использованием гомогенных катализаторов можно разделить на три стадии: гидрирование CO 2 до муравьиной кислоты; затем муравьиная кислота будет этерифицирована с образованием сложных эфиров формиата; и, наконец, сложный эфир формиата будет гидрогенизирован для получения метанола (рис. 6), как указано Хаффом и Санфордом [36].

Рисунок 6.

Гидрирование CO2 для производства метанола через каскадную систему [36].

На каждой стадии этого подхода будут использоваться разные катализаторы при определенных условиях реакции, которые включают высокую температуру (135 ° C) и давление (40 бар). Wesselbaum et al. [37] сообщили о гидрировании CO 2 60 барами H 2 и 20 барами CO 2 при 140 ° C в присутствии [(трифос) Ru- (TMM)] (TMM = триметиленметан, Трифос = 1,1,1-трис (дифенилфосфинометил) этан), что дает максимальное число оборотов 221. Таким образом, те же авторы доказали, что этот катализатор можно использовать в процессе гидрирования для скрытия сложных эфиров формиата в метанол.Помимо прямого превращения CO 2 в метанол, превращение производных CO 2 путем гидрирования, таких как поликарбонаты, карбонаты, формиаты и карбаматы, привлекло огромное внимание из-за малых барьеров этих реакций (рис. 7) [38, 39].

Рис. 7.

Непрямое гидрирование CO2 для производства метанола [39].

2.1.2.2. Гомогенное химическое превращение CO 2 в метанол

Силаны и гидриды являются основными восстановителями, которые должны использоваться при гомогенном химическом восстановлении CO 2 до метанола в присутствии органокатализаторов, таких как N-гетероциклические карбены (NHC).Хотя стоимость силанов высока, было доказано, что NHC-катализатор обладает способностью восстанавливать CO 2 до метоксидов в условиях окружающей среды, как указано Zhang et al. [40]. Как показано на рисунке 8, производные силанола и метанола будут производиться гидролизом метоксисиланов.

Рис. 8.

Катализируемая NHC конверсия CO2 и последующий гидролиз метанола [40].

Применение фрустрированных пар Льюиса для восстановления CO 2 до метанола считается еще одним примером безметаллового катализа (рис. 9) [41].На первом этапе производное форматобората получают посредством реакции между CO 2 и [TMPH] + [HB (C 6 F 5 ) 3 ] - . Координатно ненасыщенный B (C 6 F 5 ) 3 атакует нуклеофильные и промежуточные формы с форматным мостиком.

Рис. 9.

Гидрирование CO2, катализируемое кислотой Льюиса / основанием Льюиса [44].

После этого последний будет реагировать с [TMPH] + [HB (C 6 F 5 ) 3 ] - с образованием ацетального производного формальдегида.Реагент Шварца ((Cp) 2 Zr (H) (CI)) использовали в качестве источника гидрида для двухступенчатого восстановления CO 2 до формальдегида и метанола, соответственно, как показано на (Рисунок 10) [42, 43]. На первом этапе превращение CO 2 в формальдегид дает некоторые м-оксокомплексы. Затем более глубокое восстановление формальдегида может быть достигнуто путем добавления большего количества реагента Шварца, что приводит к образованию метоксида циркония на второй стадии.

Рис. 10.

Двухступенчатое восстановление CO2 до метанола с помощью реактива Шварца [44].

2.2. Электрохимическое восстановление CO 2 до метанола

В течение последних десятилетий электрохимическое преобразование CO 2 широко использовалось в лабораторных масштабах, но пока не было успешно использовано в промышленных процессах (крупномасштабных). Метод электрохимического восстановления используется для преобразования CO 2 в ценные химические вещества и топливо, такое как метанол, с использованием электричества в качестве основного источника энергии [45, 46, 47]. Для восстановления CO 2 на металлических электродах было проведено множество экспериментов с различными условиями и электрокатализаторами [48].Различные восстановленные продукты могут быть образованы электрохимически из CO 2 , и некоторые из этих продуктов представлены в таблице 1. Выбор катализатора и условий реакции играет значительную роль по сравнению с возможностью регулирования между различными восстановленными продуктами. Однако все перечисленные стандартные потенциалы в таблице 1 относительно близки к стандартному потенциалу выделения водорода [49]. Реакция выделения водорода (HER) очень важна во время электрокатализатора восстановления CO 2 , в котором H 2 O обычно присутствует в качестве электролита (и источника протонов).По этой причине указанные металлы, которые можно использовать в качестве электрокатализатора для восстановления CO 2 , имеют относительно высокие перенапряжения HER. Необходимо приложить огромные усилия, чтобы найти оптимальный электрод для электрохимического восстановления CO 2 , который снизит селективность CO 2 при низких перенапряжениях и высоких скоростях без одновременного восстановления воды [44].

Полуклеточная реакция E ° по сравнению с SHE
CO2 + 8H ++ 8e- → Ch5 + 2h3O +0.17
CO2 + 6H ++ 6e− → Ch4OH + h3O +0.031
CO2 + 4H ++ 4e− → Ch3O + h3O −0.028
CO2− + 2H ++ 2e → CO + h3O −0,10
CO2 + 2H ++ 2e− → HCOOH −0,11

Таблица 1.

Стандартные потенциалы для восстановления CO 2 [49].

Существует явное преимущество прямого преобразования захваченного CO 2 в метанол для получения полезного продукта, который можно использовать во многих энергоемких устройствах.Этот процесс позволяет рециркулировать захваченный CO 2 и производить метанол, который можно использовать в качестве возобновляемой энергии вместо ископаемого топлива в энергопотребляющих устройствах. Другими словами, с помощью процесса электровосстановления CO 2 может быть восстановлен непосредственно в электролизной ячейке обратно в метанол за одну стадию. Для получения метанола непосредственно из CO 2 [44] можно использовать различные электроды, как показано в таблице 2. В 1983 году Кэнфилд и Фрезе [50] доказали, что некоторые полупроводники, такие как n -GaAs, p -InP и p -GaAs обладают способностью производить метанол непосредственно из CO 2 , хотя и при чрезвычайно низких плотностях тока и фарадеевской эффективности (FE).Многие другие исследователи приложили некоторые усилия для увеличения как плотности тока, так и фарадеевской эффективности процесса. Seshadri et al. [51] обнаружили, что ион пиридиния представляет собой новый гомогенный электрокатализатор для восстановления CO 2 до метанола при низком перенапряжении. В последнее время широко исследуется пиридин, в котором он используется в качестве сокатализатора для образования активных частиц пиридиния in situ [52, 53, 54, 55, 56]. Обычно продукты одноэлектронного восстановления CO 2 показывают более низкую плотность тока, чем продукты двухэлектронного восстановления, такие как CO.Прямое электрохимическое восстановление CO 2 до метанола является многообещающим процессом для уменьшения количества захваченного CO 2 .

(%) 9027 9027 Оксид Cu 9027 ] −0278
Электрод Тип электрода E по сравнению с NHE (В) Плотность тока (мА · см −2 ) Фарадейский КПД Ссылка
p -InP Semiconductor -1.06 0,06 0,8 Сб. Na 2 SO 4 [50]
n-GaAs 0,16 1,0
p -GaAs 0,08 −1,3 6,9 28 0,5 M KHCO 3 [59]
RuO 2 / TiO 2 Нанотрубки −0.6 1 60 0,5 M NaHCO 3 [58]
Pt – Ru / C Сплав −0,06 0,4 7,5 ячейка
n -GaP Гомогенный катализатор −0,06 0,27 90 10 мМ пиридин при pH = 5,2 [61]
0,027 Pd 30 0.5 M NaClO4 с пиридином [51]

Таблица 2.

CO 2 электрохимическое восстановление до метанола.

Popić et al. [57] доказали, что Ru и Ru, модифицированные адатомами Cd и Cu, могут использоваться в качестве электрода для восстановления CO 2 при относительно небольших перенапряжениях. Полученные результаты показали, что на поверхности чистого Ru, Ru, модифицированного адатомами Cu и Cd, и RuOx + IrOx, модифицированного адатомами Cu и Cd, достигается восстановление CO 2 с образованием метанола за 8 ч выдержки при -0.8 В. Следовательно, в случае восстановления CO 2 на Ru, модифицированном адатомами Cu и Cd, образование метанола зависело от наличия адатомов на поверхности рутения. RuO 2 является перспективным материалом для использования в качестве электрода для восстановления CO 2 до метанола благодаря его высокой электрохимической стабильности и электропроводности. По этой причине Qu et al. [58] приготовили композитные электроды из наночастиц (НЧ) и нанотрубок (НТ) RuO 2 / TiO 2 путем нанесения RuO 2 на наночастицы и нанотрубки TiO 2 соответственно.Полученные результаты показали, что эффективность по току получения метанола из CO 2 достигает 60,5% на Pt-электроде, модифицированном RuO 2 / TiO 2 НТ. Таким образом, композитные электроды НЧ RuO 2 и RuO 2 / TiO 2 показали более низкую электрокаталитическую активность, чем композитный модифицированный Pt электрод RuO 2 / TiO 2 НТ для электрохимического восстановления CO 2 до метанола. Как показали исследования, для повышения селективности и эффективности процесса электрохимического восстановления CO 2 в качестве электрода предлагается использовать структуру нанотрубок.

2.3. Фотохимическое восстановление CO 2 в метанол

Обычно фотохимический (или фотокаталитический) метод преобразования CO 2 используется для преобразования захваченного CO 2 в метанол и другие ценные продукты с использованием солнечной энергии, такой как свет или лазер [ 62, 63]. Даже если селективность по метанолу относительно низкая, прямое преобразование CO 2 в метанол с использованием фотокаталитического метода было изучено [64]. Однако в последнее время этому методу уделяется большое внимание, и он считается наиболее привлекательным методом утилизации CO 2 .Фотокаталитический процесс конверсии CO 2 представляет собой сложную комбинацию фотофизических и фотохимических процессов вместе [62]. Следовательно, этот метод имеет некоторое сходство с электрокаталитическим восстановлением CO 2 , в котором в обоих случаях используются молекулярные катализаторы. Источники жертвенного гидрида считаются основным ограничением для восстановления CO 2 фотокаталитическим методом. Аскорбиновая кислота, амин и 1-бензил-1,4-дигидроникотинамид являются примерами жертвенного источника гидрида, который необходимо добавлять в раствор для замены анода, который будет использоваться в процессе электрокаталитического восстановления CO 2 [65] .Было проведено несколько экспериментов для проверки способности некоторых полупроводников и оксидов металлов преобразовывать СО2 в метанол. Сюда входят карбид кремния [66], TiO 2 [67, 68, 69, 70], WO 3 [71], NiO [70], ZnO [70] и InTaO 4 [72] либо сами по себе или их можно комбинировать с различными гетерогенными катализаторами для достижения той же цели. Основная проблема при производстве метанола на полупроводниках с использованием солнечной энергии заключается в том, что реакция образования обратима.Таким образом, чтобы уменьшить окисление метанола, очень важно найти новые стратегии для достижения практического промышленного процесса [66, 70].

Gondal et al. [66] доказали, что гранулированный карбид кремния является перспективным фотокатализатором для восстановления CO 2 до метанола. Гранулированный карбид кремния (α6H-SiC) был протестирован в качестве фотокатализатора для восстановления CO 2 и преобразования его в метанол с помощью лазера с длиной волны 355 нм. Реакционная ячейка была заполнена гранулами α6H-SiC, сжатым газом CO 2 под давлением 50 psi и дистиллированной водой.Поэтому они упомянули, что в фотохимическом процессе существует пара конкурирующих реакций, а именно фотоокисление и фото восстановления, как показано на рисунке 11. Когда реакция начинается, скорости фотоокисления (Ко) будут ниже, чем скорости фото восстановления. (Kr) из-за низкой концентрации производимого метанола. Полученные результаты показали, что максимальная молярная концентрация метанола и достигнутая фотонная эффективность преобразования CO 2 в метанол составляет около 1.25 ммоль / л и 1,95% соответственно.

Рис. 11.

Схематическое изображение реакций фотовосстановления и фотоокисления в фотохимическом процессе [67].

CdS / TiO 2 и Bi 2 S 3 / TiO 2 Фотокатализаторы на основе нанотрубок были протестированы Li et al. [67], и их фотокаталитическая активность, которая восстанавливает CO 2 до метанола при облучении видимым светом. Полученные результаты доказали, что синтетические тротилы являются практически хорошим материалом для фотовосстановления при преобразовании CO 2 в метанол.Наибольшее образование метанола на фотокатализаторах ТНТ – CdS и ТНТ – Bi 2 S 3 при облучении видимым светом в течение 5 ч составило 159,5 и 224,6 мкмоль / л соответственно. Луо и др. [68] изучали способность Nd / TiO 2 , синтезированного золь-гель методом, восстанавливать CO 2 в метанол в водном растворе при УФ-облучении. Эксперимент показал, что максимальный выход метанола при УФ-облучении в течение 8 часов составил 184,8 мкмоль / г, доказывая, что Nd / TiO 2 может повысить эффективность фотокаталитического восстановления CO 2 по сравнению с чистым оксидом титана.

2.4. Фотоэлектрохимическое восстановление CO 2 до метанола

Процесс фотоэлектрокаталитического восстановления CO 2 представляет собой комбинацию фотокаталитического и электрокаталитического методов. Многие исследовательские работы были направлены на поиск лучшего полупроводникового материала, который можно было бы использовать в качестве фотоэлектрода для преобразования CO 2 в метанол с использованием любой солнечной энергии в ячейке PEC; однако ни один из протестированных полупроводников не соответствовал желаемой стабильности и эффективности [73].Фактически, для фотоэлектрохимического восстановления CO 2 требуется около 1,5 эВ подводимой термодинамической энергии. Следовательно, элемент PEC требует большего количества энергии, чтобы компенсировать потери, вызванные изгибом зон (который необходим для разделения заряда на поверхности полупроводника), потенциалами перенапряжения и потерями сопротивления [61, 74, 75, 76, 77, 78, 79, 80, 81]. Первым важным этапом восстановления CO 2 до метанола фотоэлектрохимическим (PEC) методом является генерация ионов водорода и электронов солнечным излучением полупроводника, который используется в качестве фотокатода.Полупроводник (например, GaP, SiC) освещается светом как источником энергии, превышающей ширину запрещенной зоны полупроводника. В этом случае электроны в полупроводнике будут возбуждены и перенесены в зону проводимости из зоны валанса, и они достигнут катодного противоэлектрода через внешний электрический провод. Кроме того, для проведения реакций электрохимического восстановления и окисления созданные электронно-дырочные пары на границе раздела или рядом с ним будут разделены полупроводником и впрыснуты в электролит [82, 83, 84].Основной проблемой при использовании фотоэлектрохимических ячеек является способность полупроводниковых материалов n-типа генерировать дырки на поверхности, которые могут окислять сам полупроводник [85]. В последнее время огромное внимание привлекла гибридная система, состоящая из полупроводникового светоуборочного комбайна и комплекса металлических сокатализаторов. В этой системе вода считается основным источником доноров электронов и протонов для восстановления CO 2 на поверхности катода. Пример гибридной системы обсуждался Zhao et al.[86]. Они изучили полную ячейку фотокатода с InP / Ru-комплексами, которая была соединена с фотоанодом на основе TiO2 / Pt, как показано на рисунке 12. В этой полной ячейке, чтобы избежать повторного окисления формиата на поверхности фотоанода, в качестве сепаратора использовалась протонообменная мембрана. Однако Arai et al. сконструировал беспроводную полную ячейку для фотоэлектрохимического восстановления CO 2 , в которой система состоит из InP / Ru-комплекса в качестве гибридного фотокатода и фотоанода SrTiO 3 (Рисунок 13).В этой системе окислительно-восстановительные реакции CO 2 и H 2 O будут происходить под действием солнечного излучения без какого-либо смещения. Полученные результаты показали, что эффективность преобразования солнечной энергии в химическую в этих двух полных ячейках составила 0,03% и 0,14% для TiO2 – InP / [RuCP] и SrTiO3 – InP / [RuCP] соответственно. Barton et al. [61] успешно восстановили CO 2 до метанола с помощью катализированного фотоэлектрохимического элемента (PEC) на основе p-GaP в процессе, называемом химическим уменьшением выбросов углерода.Термин «уменьшение химического углерода» описывает фотоиндуцированное преобразование CO 2 в метанол без использования дополнительного источника энергии, генерирующего CO 2 . Полученные результаты показали, что селективность метанола и конверсия CO 2 составили 100 и 95% соответственно.

Рис. 12.

Двухкамерный фотоэлектрохимический элемент для восстановления CO2 [87].

Рис. 13.

Однокамерный фотоэлектрохимический элемент для восстановления CO2 [87].

3. Перспективы на будущее и выводы

Конверсия двуокиси углерода представляет собой как возможность, так и проблему во всем мире для обеспечения устойчивости окружающей среды и энергетики. Основные стратегии сокращения выбросов CO 2 должны быть сосредоточены на использовании CO 2 , рециркуляции CO 2 в сочетании с возобновляемой энергией для экономии источников углерода, а также на производстве полезных химикатов из CO 2 . Следовательно, преобразование CO 2 в энергетический продукт, такой как метанол, потребует большого количества захваченного CO 2 , в котором рынок метанола потенциально может быть значительным.Кроме того, произведенный метанол можно использовать вместо ископаемого топлива, тем самым снижая зависимость от ископаемого топлива и способствуя росту использования CO 2 на рынке. Здесь представлена ​​полная литература по различным методам преобразования CO 2 в метанол. Это включает гомогенное / гетерогенное каталитическое, электрохимическое, фотохимическое и фотоэлектрохимическое восстановление. Однако высокая эффективность процесса конверсии CO 2 может быть достигнута за счет использования эффективного катализатора.В общем, разработка необходимого катализатора может быть использована в качестве решения, если катализатор уже используется, но требуется высокая стоимость для увеличения масштаба, или он не существует и ожидает открытия, поэтому проблемы в каталитических процессах действительно огромны. Плохая селективность по продукту и низкие / высокие температуры реакции считаются основными препятствиями в гетерогенном процессе восстановления CO 2 . Однако приведенное выше обсуждение показывает, что среди различных способов, предлагаемых для преобразования CO 2 в метанол или в любое ценное химическое вещество, электрохимические ячейки являются предпочтительными по сравнению с другими методами.Тем не менее, при электрохимическом восстановлении CO 2 все еще существует множество барьеров, при котором электрокатализатор необходимо использовать с более высокой селективностью, а также с более низкими перенапряжениями. Различные гетерогенные электрокатализаторы являются селективными, быстрыми и энергоэффективными, но они считаются нестабильными катализаторами. Следовательно, в будущем электроэнергия, необходимая для электрохимического процесса восстановления CO 2 в больших масштабах, может поступать из различных возобновляемых источников энергии, таких как гидроэнергетика, ветер, волны, геотермальные источники, приливы и т. Д.В этом смысле многие исследовательские работы должны быть сосредоточены на новых электрокаталитических материалах, которые можно использовать для работы при более высоких плотностях тока без потери фарадеевской эффективности. С другой стороны, фотохимические процессы предлагают привлекательный подход к восстановлению CO 2 до метанола с использованием солнечной энергии. Однако этот метод не получил широкого распространения из-за критических условий для поглощения необходимого количества солнечной энергии. В противном случае перспективы разработки успешных технологий для эффективного преобразования CO 2 с использованием солнечной энергии, безусловно, являются долгосрочными (> 5 лет).Тем не менее, процессы фотоэлектрохимического восстановления оказались привлекательными подходами для восстановления CO 2 до метанола. В настоящее время применение солнечных фотоэлектрохимических устройств очень ограничено из-за их высокой стоимости и нескольких причин, как обсуждалось выше. Однако очень важно продолжать исследования в этих областях, потому что эта технология будет крайне необходима для эффективного сокращения выбросов CO 2 в ближайшие годы.

Благодарности

Авторы хотели бы поблагодарить Центр перспективных материалов Катарского университета (QU) за поддержку этой работы.Г-жа Саджеда Альсайде также благодарит QU за предоставленную ей стипендию для выпускников.

.

Китай Полуавтоматическая сварка, Производители полуавтоматической сварки, Поставщики, Цена

Посмотреть:

Список

Смотреть галерею

63,160 найдено товаров из 2,105

.

GMAW MIG Сварка Методы и советы

перейти к содержанию Меню
  • Руководства по продукции
    • Лучшие сварщики
      • Сварочные аппараты MIG
      • Сварочные аппараты TIG
      • Универсальные сварочные аппараты
      • Сварочные аппараты
      • Плазменные резаки
    • Защитное снаряжение
      • Шлемы
      • Куртки
      • Перчатки для сварки MIG
      • Сапоги
      • Рукава
    • Сравнение продуктов
  • Основы сварки
.

Двуокись углерода

Что такое двуокись углерода и как она обнаруживается?

Джозеф Блэк, шотландский химик и врач, впервые обнаружил углекислый газ в 1750-х годах. При комнатной температуре (20-25 o C) углекислый газ представляет собой бесцветный газ без запаха, слабокислый и негорючий.
Углекислый газ - это молекула с молекулярной формулой CO 2 . Линейная молекула состоит из атома углерода, который дважды связан с двумя атомами кислорода, O = C = O.
Хотя диоксид углерода в основном находится в газообразной форме, он также имеет твердую и жидкую формы. Он может быть твердым только при температуре ниже -78 o C. Жидкая двуокись углерода существует в основном, когда двуокись углерода растворяется в воде. Углекислый газ растворяется в воде только при поддержании давления. После падения давления газ CO2 попытается уйти в воздух. Это событие характеризуется образованием пузырьков CO2 в воде.

CO 2 -молекула

[../_adsense/adlink hori uk general.htm]

Свойства двуокиси углерода

Углекислый газ имеет несколько физических и химических свойств.
Здесь мы суммируем их в таблице.

Свойство

Значение

Молекулярный вес

44,01

Удельный вес

1.53 при 21 o C

Критическая плотность

468 кг / м 3

Концентрация в воздухе

370,3 * 10 7 ppm

Стабильность

Высокая

Жидкость

Давление <415.8 кПа

Твердое вещество

Температура <-78 o C

Константа Генри для растворимости

298,15 моль / кг * бар

Растворимость в воде

0,9 об. / Об. При 20 o C

Где на Земле мы находим диоксид углерода?

Углекислый газ можно найти в основном в воздухе, но также и в воде как часть углеродного цикла.Мы можем показать вам, как работает углеродный цикл, с помощью объяснения и схематического изображения. -> Перейти к углеродному циклу.

Применение углекислого газа людьми

Люди используют углекислый газ по-разному. Самый известный пример - его использование в безалкогольных напитках и пиве для придания им газообразности. Двуокись углерода, выделяемая разрыхлителем или дрожжами, поднимает тесто для торта.
В некоторых огнетушителях используется углекислый газ, потому что он плотнее воздуха. Углекислый газ может покрыть огонь из-за своей тяжести.Это предотвращает попадание кислорода в огонь, и в результате горящий материал лишается кислорода, необходимого для продолжения горения.
Двуокись углерода также используется в технологии, называемой сверхкритической жидкостной экстракцией, которая используется для удаления кофеина из кофе. Твердая форма углекислого газа, широко известная как сухой лед, используется в театрах для создания сценических туманов и создания пузырей вроде «волшебных зелий».

Роль двуокиси углерода в экологических процессах

Двуокись углерода - один из наиболее распространенных газов в атмосфере.Углекислый газ играет важную роль в жизненно важных процессах растений и животных, таких как фотосинтез и дыхание. Эти процессы будут кратко объяснены здесь.

Зеленые растения превращают углекислый газ и воду в пищевые соединения, такие как глюкоза и кислород. Этот процесс называется фотосинтезом.

Реакция фотосинтеза следующая:
6 CO 2 + 6 H 2 O -> C 6 H 12 O 6 + 6 O 2

Растения и животные, в свою очередь, преобразовывают пищевые соединения, объединяя их с кислородом, чтобы высвободить энергию для роста и другой жизнедеятельности.Это процесс дыхания, обратный фотосинтезу.

Реакция дыхания следующая:
C 6 H 12 O 6 + 6 O 2 -> 6 CO 2 + 6 H 2 O

Фотосинтез и дыхание важную роль в углеродном цикле и находятся в равновесии друг с другом.
Фотосинтез преобладает в более теплое время года, а дыхание - в более холодное время года. Однако оба процесса происходят круглый год.Таким образом, в целом содержание углекислого газа в атмосфере уменьшается в течение вегетационного периода и увеличивается в остальное время года.
Поскольку сезоны в северном и южном полушариях противоположны, углекислый газ в атмосфере увеличивается на севере и уменьшается на юге, и наоборот. Цикл более отчетливо присутствует в северном полушарии; потому что здесь относительно больше суши и наземной растительности. Океаны доминируют в южном полушарии.

Влияние углекислого газа на щелочность

Углекислый газ может изменять pH воды.Вот как это работает:

Двуокись углерода слегка растворяется в воде с образованием слабой кислоты, называемой угольной кислотой, H 2 CO 3 , в соответствии со следующей реакцией:
CO 2 + H 2 O - -> H 2 CO 3

После этого углекислота слабо и обратимо реагирует в воде с образованием катиона гидроксония H 3 O + и бикарбонат-иона HCO 3 - согласно следующему реакция:
H 2 CO 3 + H 2 O -> HCO 3 - + H 3 O +

Это химическое поведение объясняет, почему вода, которая обычно имеет нейтральный pH 7 имеет кислый pH приблизительно 5.5 при контакте с воздухом.

Выбросы углекислого газа людьми

В результате деятельности человека количество CO 2 , выбрасываемое в атмосферу, за последние 150 лет значительно увеличилось. В результате он превысил количество, поглощенное биомассой, океанами и другими стоками.
Концентрация углекислого газа в атмосфере выросла с 280 ppm в 1850 году до 364 ppm в 1998 году, в основном из-за деятельности человека во время и после промышленной революции, которая началась в 1850 году.
Люди увеличивают количество углекислого газа в воздухе за счет сжигания ископаемого топлива, производства цемента, расчистки земель и сжигания лесов. Около 22% нынешних концентраций CO 2 в атмосфере существует из-за этой деятельности человека, учитывая, что естественные количества диоксида углерода не меняются. Мы более подробно рассмотрим эти эффекты в следующем абзаце.

Экологические проблемы - парниковый эффект

Тропосфера - это нижняя часть атмосферы толщиной около 10-15 километров.В тропосфере есть газы, называемые парниковыми газами. Когда солнечный свет достигает Земли, часть его превращается в тепло. Парниковые газы поглощают часть тепла и удерживают его у поверхности земли, так что земля нагревается. Этот процесс, широко известный как парниковый эффект, был открыт много лет назад и позднее подтвержден лабораторными экспериментами и атмосферными измерениями.
Жизнь в том виде, в каком мы ее знаем, существует только благодаря этому естественному парниковому эффекту, потому что этот процесс регулирует температуру Земли.Когда не было бы парникового эффекта, вся земля была бы покрыта льдом.
Количество тепла, удерживаемого в тропосфере, определяет температуру на Земле. Количество тепла в тропосфере зависит от концентрации парниковых газов в атмосфере и времени, в течение которого эти газы остаются в атмосфере. Наиболее важными парниковыми газами являются диоксид углерода, CFC (хлор-фторуглероды), оксиды азота и метан.

С начала промышленной революции 1850 года человеческие процессы стали причиной выбросов парниковых газов, таких как CFC и углекислый газ.Это вызвало экологическую проблему: количество парниковых газов выросло настолько сильно, что климат Земли меняется из-за повышения температуры. Это неестественное дополнение к парниковому эффекту известно как глобальное потепление. Предполагается, что глобальное потепление может вызвать усиление штормовой активности, таяние ледяных шапок на полюсах, что вызовет затопление обитаемых континентов, и другие экологические проблемы.

Вместе с водородом диоксид углерода является основным парниковым газом.Однако водород не выделяется во время промышленных процессов. Люди не вносят вклад в количество водорода в воздухе, оно изменяется естественным образом только в течение гидрологического цикла, и в результате не является причиной глобального потепления.
Увеличение выбросов углекислого газа вызывает около 50-60% глобального потепления. Выбросы углекислого газа выросли с 280 ppm в 1850 году до 364 ppm в 1990-х годах.

В предыдущем абзаце упоминались различные виды деятельности человека, которые способствуют выбросу углекислого газа.Из этих видов деятельности сжигание ископаемого топлива для производства энергии вызывает около 70-75% выбросов диоксида углерода, являясь основным источником выбросов диоксида углерода. Остальные 20-25% выбросов вызваны расчисткой и сжиганием земель, а также выбросами выхлопных газов автотранспортных средств.
Большая часть выбросов углекислого газа происходит в результате промышленных процессов в развитых странах, таких как США и Европа. Однако выбросы углекислого газа в развивающихся странах растут.Ожидается, что в этом столетии выбросы углекислого газа увеличатся вдвое, и, как ожидается, они будут продолжать расти и вызывать проблемы после этого.
Углекислый газ остается в тропосфере от пятидесяти до двухсот лет.

Первым, кто предсказал, что выбросы углекислого газа в результате сжигания ископаемого топлива и других процессов горения вызовут глобальное потепление, был Сванте Аррениус, опубликовавший статью «О влиянии углекислоты в воздухе на температуру земли. »в 1896 году.
В начале 1930 года было подтверждено, что содержание двуокиси углерода в атмосфере действительно увеличивается. В конце 1950-х годов, когда были разработаны высокоточные методы измерения, было найдено еще больше подтверждений. К 1990-м годам теория глобального потепления получила широкое признание, хотя и не всеми. Вопрос о том, действительно ли глобальное потепление вызвано увеличением содержания углекислого газа в атмосфере, все еще обсуждается.

Рост концентрации углекислого газа в воздухе за последние десятилетия

Киотский договор

Мировые лидеры собрались в Киото, Япония, в декабре 1997 года, чтобы обсудить заключение мирового договора, ограничивающего выбросы парниковых газов, в основном углекислый газ, который, как считается, вызывает глобальное потепление.К сожалению, хотя Киотские договоры какое-то время работали, Америка теперь пытается их уклониться.

Углекислый газ и здоровье

Углекислый газ необходим для внутреннего дыхания в организме человека. Внутреннее дыхание - это процесс, при котором кислород транспортируется к тканям тела, а углекислый газ уносится от них.
Углекислый газ обеспечивает уровень pH крови, необходимый для выживания.
Буферная система, в которой диоксид углерода играет важную роль, называется карбонатным буфером.Он состоит из ионов бикарбоната и растворенного углекислого газа с угольной кислотой. Угольная кислота может нейтрализовать ионы гидроксида, которые при добавлении увеличивают pH крови. Бикарбонат-ион может нейтрализовать ионы водорода, что при добавлении может вызвать снижение pH крови. И увеличение, и уменьшение pH опасно для жизни.

Известно, что углекислый газ не только является важным буфером в организме человека, но и оказывает воздействие на здоровье, когда его концентрация превышает определенный предел.

Углекислый газ представляет собой основную опасность для здоровья:
- Удушье . Вызвано выбросом углекислого газа в замкнутом или непроветриваемом помещении. Это может снизить концентрацию кислорода до уровня, непосредственно опасного для здоровья человека.
- Обморожение . Температура твердого углекислого газа всегда ниже -78 o C при обычном атмосферном давлении, независимо от температуры воздуха. Работа с этим материалом более одной-двух секунд без надлежащей защиты может вызвать серьезные волдыри и другие нежелательные эффекты.Газообразный диоксид углерода, выделяющийся из стального баллона, такого как огнетушитель, вызывает аналогичные эффекты.
- Поражение почек или кома . Это вызвано нарушением химического равновесия карбонатного буфера. Когда концентрация углекислого газа увеличивается или уменьшается, вызывая нарушение равновесия, может возникнуть ситуация, угрожающая жизни.
[../_adsense/eng_hor.htm]

Ресурсы:

http://www.oism.org/pproject/s33p36.htm
http://cdiac.ornl.gov/pns/faq.html
http://www.ilpi.com/msds/ref/carbondioxide.html
Жизнь в окружающей среде, книга Дж. Тайлера Миллера

.

Смотрите также