Вес 1 м3 грунта


Вес грунта в 1 м3

      Удельный вес грунта – отношение объёма грунта к весу твердых частиц, высушенных при температуре 100-105 градусов Цельсия. Зависит, удельный вес грунта, от наличия органических веществ и минералогического состава и обычно имеет почти постоянную величину, если не содержит растительных остатков. Ниже представлена таблица удельного веса различных грунтов.

Вес грунта в зависимости от типа
Тип грунта Удельный вес (т/м3) Отклонение удельного веса (в положительную и в отрицательную сторону)
т/м3 %
Глина (свежая) 2,74 ~0,027 ~0,99
Песок 2,66 ~0,010 ~0,36
Супесь 2,70 ~0,017 ~0,63
Суглинок 2,71 ~0,020 ~0,74
Чернозем 1,45 ~0,05 ~3,45

     Объёмный вес грунта – вес грунта, выраженный в единице объёма. Величина не постоянная, а изменяется в зависимости от влажности грунта. Различают два типа объёмного веса грунта: влажный и сухой.

     Объемный вес сухого грунта, также его называют вес скелета грунта, определяется по формуле: О = У (1 – N), где У – удельный вес грунта, а N– выраженная в долях единицы пористость грунта.

     Объемный вес влажного грунта определяется по другой формуле: О2 = О (1+W), где О – объёмный вес сухого грунта, а W– весовая влажность грунта.

     Усреднённые значения объемного веса для влажного грунта представлены в таблице ниже:

Объемный вес грунта и коофициент пористости в зависисмости от типа
Тип грунта Коэффициент пористости Объёмный вес (т/м3)
Глина

0,5

0,6

0,8

1,1

1,80-2,10

1,70-2,10

1,70-1,90

1,60-1,80

Песок:

- пылеватый

- мелкий маловлажный

- средней крупности

- крупный и гравелистый

отсутствует

  

1,80-2,05

1,60-2,00

1,60-1,90

1,75-1,85

Супесь

0,5

0,7

1,70-2,00

1,50-1,90

Суглинок

0,5

0,7

1,0

1,80-2,05

1,75-1,95

1,70-1,80

Торф отсутствует 0,55-1,02

 

   Смотри так же: статья про удельный вес глины и статья про удельный вес суглинка

            Объёмный вес грунта под водой – вес единицы объёма при естественной пористости под водой. Используется данное измерение при расчётах откосов, устойчивости оснований, при оценке суффозионных явлений и других вычислений. Величина равна весу объёма грунта за вычетом величины вытесненной твердыми частицами воды и может быть представлена такой формулой: О3 = О – M, где O – объёмный вес грунта, а M – величина вытесненной воды.

Вес грунта растительного в 1 м3 таблица

Пожалуйста, оцените качество статьи Рейтинг:

5,00 (1 оценок)

Современная стройка не может обойтись без применения бетона, одним из основных компонентов которого является песок. Для грамотного расчета объемов закупки важно знать, сколько весит куб песка и от каких условий зависит эта цифра. Разобраться в этих тонкостях поможет статья.

При создании строительных смесей нужно точно соблюдать необходимые пропорции, ведь от этого во многом зависит долговечность и качество фундамента в целом. Поэтому так важен серьезный подход к покупке материалов.

Для создания бетонной смеси необходимо располагать точной информацией, сколько килограммов (тонн) в 1 кубе песка. Эта цифра (ГОСТ 8736-93) составляет ориентировочно 1,5 — 1,7 тонн, но может колебаться в зависимости от разных причин. Один куб песка с идеальными параметрами (сухость, чистота, размер фракций) весит 1300 килограммов, но цена его очень высока, поскольку добыть такой песок технически сложно.

Удельный вес грунта в соответствии с ГОСТ 5180

Удельный вес грунта (или объемный вес грунта) — это отношение полного веса образца грунта к полному объему, который он занимает, включая объем пор.

Обозначается символом γ  (гамма).

Единицы измерения: кН/м3, кН/м3, кгс/м3, тс/м3.

Формула:

γ = ρ х g, где

  • ρ — плотность грунта
  • g =9,81 м/с2 — ускорение свободного падения (иногда применяется округленно равным 10 м/с2)

Плотность грунта определяется:

  • методом режущего кольца, в соответствии с разделом 9 ГОСТ 5180-2015
  • методом взвешивания в воде, в соответствии с разделом 10 ГОСТ 5180-2015
  • для мерзлого грунта методом взвешивания в нейтральной жидкости (керосин, лигроин и др.), в соответствии с разделом 11 ГОСТ 5180-2015

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

Коэффициент уплотнения грунта

Как достичь требуемого коэффициента уплотнения?

Плотность грунта - таблица естественной плотности

Алевролиты
Слабые, низкой прочности 1500
Крепкие, малопрочные 2200
Аргилиты
Крепкие, плитчатые, малопрочные 2000
Массивные, средней прочности 2200
Вечномерзлые и мерзлые сезонно-протающие грунты
Растительный слой, торф, заторфованные грунты 1150
Пески, супеси, суглинки и глины без примесей 1750
Пески, супеси, суглинки и глины с примесью гравия, гальки, дресвы, щебня в количестве до 20% и валунов до 10% 1950
Пески, супеси, суглинки и глины с примесью гравия, гальки, дресвы, щебня в количестве более 20% и валунов более 10%, а также гравийно-галечные и щебенисто-дресвяные грунты 2100
Глина
Мягко- и тугопластичная с примесью щебня, гальки, гравия или строительного мусора до 10% 1750
Мягко- и тугопластичная без примесей 1800
Мягко- и тугопластичная с примесью более 10% 1900
Мягкая карбонная 1950
Твердая карбонная, тяжелая ломовая сланцевая 1950…2150
Гравийно-галечные грунты (кроме моренных)
Грунт при размере частиц до 80 мм 1750
Цементированная смесь гальки, гравия, мелкозернистого песка и лёссовидной супеси 1900…2200
Грунт при размере частиц более 80 мм 1950
Грунт при размере частиц более 80 мм, с содержанием валунов до 10% 1950
Грунт при размере частиц более 80 мм, с содержанием валунов до 30% 2000
Грунт при размере частиц более 80 мм, с содержанием валунов до 70% 2300
Грунт при размере частиц более 80 мм, с содержанием валунов более 70% 2600
Грунты ледникового происхождения (моренные)
Пески, супеси и суглинки при коэффициенте пористости или показателе консистенции более 0,5 и содержании частиц крупнее 2 мм до 10% 1600
Пески, супеси и суглинки при коэффициенте пористости или показателе консистенции до 0,5, а также глины при показателе консистенции более 0,5 и содержании частиц крупнее 2 мм до 10% 1800
Глины при показателе консистенции до 0,5 и содержании частиц крупнее 2 мм до 10% 1850
Пески, супеси, суглинки и глины при коэффициенте пористости или показателе консистенции более 0,5 и содержании частиц крупнее 2 мм до 35% 1800
То же, до 65% 1900
То же, более 65% 1950
Пески, супеси, суглинки и глины при коэффициенте пористости или показателе консистенции до 0,5 и содержании частиц крупнее 2 мм до 35 % 2000
То же, до 65% 2100
То же, более 65% 2300
Валунный грунт (содержание частиц крупнее 200 мм более 50%) при любых показателей пористости и консистенции 2500
Грунт растительного слоя
Без корней кустарника и деревьев 1200
С корнями кустарника и деревьев 1200
С примесью щебня, гравия или строительного мусора 1400
Диабазы
Сильно выветрившиеся, малопрочные 2600
Слабо выветрившиеся, прочные 2700
Незатронутые выветриванием, крепкие, очень прочные 2800
Незатронутые выветриванием, особо крепкие, очень прочные 2900
Доломиты
Мягкие, пористые, выветрившиеся, средней прочности 2700
Плотные, прочные 2800
Крепкие, очень прочные 2900
Змеевик (серпентин)
Выветрившийся малопрочный 2400
Средней крепости и прочности 2500
Крепкий, прочный 2600
Известняки
Мягкие, пористые, выветрившиеся, малопрочные 1200
Мергелистые слабые, средней прочности 2300
Мергелистые плотные, прочные 2700
Крепкие, доломитизированные, прочные 2900
Плотные окварцованные, очень прочные 3100
Кварциты
Сланцевые, сильно выветрившиеся, средней прочности 2500
Сланцевые, средне выветрившиеся, прочные 2600
Слабо выветрившиеся, очень прочные 2700
Не выветрившиеся, очень прочные 2800
Не выветрившиеся, мелкозернистые, очень прочные 3000
Конгломераты и брекчии
Слабосцементированные, а также из осадочных пород на глинистом цементе, малопрочные 1900…2100
Из осадочных пород на известковом цементе, средней прочности 2300
Из осадочных пород на кремнистом цементе, прочные 2600
С галькой из изверженных пород на известковом и кремнистом цементе, очень прочные 2900
Коренные глубинные породы (граниты, гнейсы, диориты, сиениты, габбро и др.)
Крупнозернистые, выветрившиеся и дресвяные, малопрочные 2500
Среднезернистые, выветрившиеся, средней прочности 2600
Мелкозернистые, выветрившиеся, прочные 2700
Крупнозернистые, не затронутые выветриванием, прочные 2800
Среднезернистые, не затронутые выветриванием, очень прочные 2900
Мелкозернистые, не затронутые выветриванием, очень прочные 3100
Микрозернистые, порфировые, не затронутые выветриванием, очень прочные 3300
Коренные излившиеся породы (андезиты, базальты, порфириты, трахтиты и др.)
Сильно выветрившиеся, средней прочности 2600
Слабо выветрившиеся, прочные 2700
Со следами выветривания, очень прочные 2800
Без следов выветривания, очень прочные 3100
Не затронутые выветриванием, микроструктурные, очень прочные 3300
Лёсс
Мягкопластичный 1600
Тугопластичный с примесью гравия или гальки 1800
Твердый 1800
Мел
Мягкий, низкой прочности 1550
Плотный, малопрочный 1800
Мергель
Мягкий, рыхлый, низкой прочности 1900
Средний, малопрочный 2300
Плотный средней прочности 2500
Мусор строительный
Рыхлый и слежавшийся 1800
Сцементированный 1900
Песок
Без примесей 1600
Барханный и дюнный 1600
С примесью щебня, гальки, гравия или строительного мусора до 10% 1600
То же, с примесью более 10% 1700
Песчаник
Выветрившийся, малопрочный 2200
На глинистом цементе средней прочности 2300
На известковом цементе, прочный 2500
Плотный, на известковом или железистом цементе, прочный 2600
Кремнистый, очень прочный 2700
На кварцевом цементе, очень прочный 2700
Ракушечники
Слабо цементированные, низкой прочности 1200
Сцементированные, малопрочные 1800
Сланцы
Выветрившиеся, низкой прочности 2000
Окварцованные, прочные 2300
Песчаные, прочные 2500
Кремнистые, очень прочные 2600
Окремнелые, очень прочные 2600
Слабо выветрившиеся и глинистые 2600
Средней прочности 2800
Солончаки и солонцы
Мягкие, пластичные 1600
Твердые 1800
Суглинки
Легкие и лёссовидные, мягкопластичные без примесей 1700
То же, с примесью гальки, щебня, гравия или строительного мусора до 10% и тугопластичные без примесей 1700
Легкие и лёссовидные, мягкопластичные с примесью гальки, щебня, гравия, или строительного мусора более 10%, тугопластичные с примесью до 10%, а также тяжелые, полутвердые и твердые без примесей и с примесью до 10% 1750
Тяжелые, полутвердые и твердые с примесью щебня, гальки, гравия или строительного мусора более 10% 1950
Супеси
Легкие, пластичные без примесей 1650
Твердые без примесей, а также пластичные и твердые с примесью щебня, гальки, гравия или строительного мусора до 10% 1650
То же, с примесью до 30% 1800
То же, с примесью более 30% 1850
Торф
Без древесных корней 800…1000
С древесными корнями толщиной до 30 мм 850…1050
То же, более 30 мм 900…1200
Трепел
Слабый, низкой прочности 1500
Плотный, малопрочный 1770
Чернозёмы и каштановые грунты
Твердые 1200
Мягкие, пластичные 1300
То же, с корнями кустарника и деревьев 1300
Щебень
При размере частиц до 40 мм 1750
При размере частиц до 150 мм 1950
Шлаки
Котельные, рыхлые 700
Котельные, слежавшиеся 700
Металлургические невыветрившиеся 1500
Прочие грунты
Пемза 1100
Туф 1100
Дресвяной грунт 1800
Опока 1900
Дресва в коренном залегании (элювий) 2000
Гипс 2200
Бокситы плотные, средней прочности 2600
Мрамор прочный 2700
Ангидриты 2900
Кремень очень прочный 3300

Объемный вес грунта для застройщика |

Иногда при строительстве своего дома нужно определить объемный вес грунта. Все мы что-то копаем, роем, вывозим, привозим… Всегда требуется определить хотя бы нужный тоннаж заказываемой машины, чтобы не попасть впросак.

Грунт перевозится довольно часто. Как определить его объемный вес (ОВ)? Этот вопрос и рассмотрим.

Для начала надо уяснить себе, чем ОВ отличается от УВ (удельного веса), похожую задачку с песком мы решали здесь.

Удельным весом грунта будет называться отношение его объема к массе его твердых частичек, которые высушены при Т=100-105°С.

Нужно помнить, что УВ зависит от:

  • минералогического состава;
  • количества органических веществ;
  • отсутствия (либо наличия) всевозможных растительных остатков.

Зачем нам нужно знать УВ? Эта величина понадобится при определении ОВ. Таблица удельных весов наиболее встречаемых грунтов выглядит вот так.

Теперь, зная эти цифры, можно приступать к определению объемного веса грунта, т.е. в единице объема.

Основной фактор, который влияет на этот параметр — влажность. В зависимости от нее объемный вес грунта разделяется на 2 вида.

  1. Сухой.
  2. Влажный.

На это обстоятельство следует обращать внимание.

Порой такие мелочи вносят ошибку в расчеты.

ОВ сухого материала вычисляется по формуле:

Что касается ОВ влажного материала, он вычисляется вот так:

Конечно, застройщик-любитель этими формулами пользоваться не будет. Ему нужно подсчитать все быстро и без лишней головной боли.

Искомые усредненные значения объемного веса влажного грунтового материала можно брать из этой таблицы.

Как видим, необходимо учитывать пористость материала. Грунт — это очень сложная, многогранная и дисперсная среда, состоящая из многих слагаемых. Каких именно?

  • Твердых минеральных частиц.
  • Пустот (порового пространства, которое обычно заполнено воздухом и водой).

Точные подсчеты по вычислению его ОВ порой весьма затруднительны. Впрочем, рядовому застройщику это и не нужно. Достаточно взять усредненные данные и подставить их в свои расчеты.

В справочниках можно встретить такую полуэкзотическую величину, как ОВ грунта под водой. Это масса единицы объема под водой с ее натуральной пористостью. Значение это = массе объема материала минус количество воды, которая вытесняется твердыми частицами. Рассчитывается эта объемная величина по формуле:

Egor11

Песок, щебень, керамзит с доставкой и самовывозом 24 часа в сутки

Пластичность грунта

Пластичность грунта — его способность деформироваться под действием внешнего давления без разрыва сплошности массы и сохранять приданную форму после прекращения деформирующего усилия.

Для установления способности грунта принимать пластичное состояние определяют влажность, характеризующую границы пластичного состояния грунта текучести и раскатывания.

Граница текучести WL характеризует влажность, при которой грунт из пластичного состояния переходит в полужидкое — текучее. При этой влажности связь между частицами нарушается благодаря наличию свободной воды, вследствие чего частицы грунта легко смещаются и разъединяются. В результате этого сцепление между частицами становится незначительным и грунт теряет свою устойчивость.

Граница раскатывания WP соответствует влажности, при которой грунт находится на границе перехода из твердого состояния в пластичное. При дальнейшем увеличении влажности (W > WP) грунт становится пластичным и начинает терять свою устойчивость под нагрузкой. Границу текучести и границу раскатывания называют также верхним и нижним пределами пластичности.

Определив влажность на границе текучести и границе раскатывания, вычисляют число пластичности грунта IP. Число пластичности представляет собой интервал влажности, в пределах которого грунт находится в пластичном состоянии, и определяется как разность между границей текучести и границей раскатывания грунта:

IP = WL — WP

Чем больше число пластичности, тем более пластичен грунт. Минеральный и зерновой составы грунта, форма частиц и содержание глинистых минералов существенно влияют на границы пластичности и число пластичности.

Вес и состав Земли

Примерный вес

Тип почвы Примерный вес
(фунт / фут 3 ) (кг / м 3 )
Рыхлая земля 75 1200
Утрамбованная земля 100 1600

Типичный состав

78

Элемент Приблизительное содержание (%)
Алюминий 6–10
Кальций 1–7
Железо 2–10
Магний 0.1 - 3
Кислород 44 - 49
Калий 1,5 - 3
Кремний 22 - 36
Натрий 2,4 - 2,5

Классификация почвы

Грунт Размер Seeve (мм)
Ил 0,002 - 0,06
Песок 0.06 - 2,0
Гравий 2,0 - 60
Булыжники 60-200
Валуны 200 -

Соотношение объемов почвы

Соотношение пустот

e = v / V s

= n / (1 - n) (1)

где

e = отношение пустот

V v = V a a V w = объем воды и воздуха в почве ( м 3 )

V a = объем воздуха в почве (м 3 )

V w = объем воды в почве (м 3 )

V s = объем твердых частиц в почве (м 3 )

n = пористость

901 58 Пористость

n = V v / V

= e / (1 + e) ​​(2)

где

n = пористость

V = общий объем почвы - включая воду и воздух (м 3 )

Степень насыщения

S = V w / V (3)

где

S = степень насыщения

V = общий объем почвы, включая воду и воздух (м 3 )

.

Удельный вес и плотность грунта

Удельный вес грунта

Обозначения и обозначения
γ, γ м = масса единицы, насыпная масса единицы, масса влажной единицы
γ d = Масса сухой единицы
γ sat = Насыщенная масса единицы
γ b , γ ' = Плавучесть или эффективный удельный вес
γ с = Удельный вес твердых частиц
γ w = Удельный вес воды (равен 9810 Н / м 3 )
W = Общий вес грунта
Вт с = Вес твердых частиц
W w = Вес воды
V = Объем почвы
V с = Объем твердых частиц
V v = Объем пустот
V w = Объем воды
S = степень насыщения
w = содержание воды или влажность
G = удельный вес твердых частиц

Вес насыпной единицы / Вес влажной единицы
$ \ gamma = \ dfrac {W} {V} $

$ \ gamma = \ dfrac {W_w + W_s} {V_v + V_s}

долл. США

$ \ gamma = \ dfrac {\ gamma_w V_w + \ gamma_s V_s} {V_v + V_s} $

$ \ gamma = \ dfrac {\ gamma_w V_w + G \ gamma_w V_s} {V_v + V_s} $

$ \ gamma = \ dfrac {V_w + G V_s} {V_v + V_s} \ gamma_w $

$ \ gamma = \ dfrac {S V_v + G V_s} {V_v + V_s} \ gamma_w $

$ \ gamma = \ dfrac {S (V_v / V_s) + G (V_s / V_s)} {(V_v / V_s) + (V_s / V_s)} \ gamma_w $

$ \ gamma = \ dfrac {Se + G} {e + 1} \ gamma_w $

$ \ gamma = \ dfrac {(G + Se) \ gamma_w} {1 + e}

долларов США

Примечание: Se = Gw, таким образом,

$ \ gamma = \ dfrac {(G + Gw) \ gamma_w} {1 + e}

долл. США

Удельный вес влажного в пересчете на плотность в сухом состоянии и влажность
$ \ gamma = \ dfrac {W} {V} = \ dfrac {W_s + W_w} {V} $

$ \ gamma = \ dfrac {W_s (1 + W_w / W_s)} {V} = \ dfrac {W_s} {V} (1 + w)

долларов США

$ \ gamma = \ gamma_d (1 + w)

$

Сухой вес (S = w = 0)
Из $ \ gamma = \ dfrac {(G + Se) \ gamma_w} {1 + e} $ и $ \ gamma = \ dfrac {(G + Gw) \ gamma_w} {1 + e} $, S = 0 и w = 0

$ \ gamma_d = \ dfrac {G \ gamma_w} {1 + e}

долл. США

Насыщенный вес единицы (S = 1)
От $ \ gamma = \ dfrac {(G + Se) \ gamma_w} {1 + e} $, S = 100%

$ \ gamma_ {sat} = \ dfrac {(G + e) ​​\ gamma_w} {1 + e}

долларов

Вес плавучего агрегата или эффективный вес агрегата
$ \ gamma '= \ gamma_ {sat} - \ gamma_w $

$ \ gamma '= \ dfrac {(G + e) ​​\ gamma_w} {1 + e} - \ gamma_w $

$ \ gamma '= \ dfrac {(G + e) ​​\ gamma_w - (1 + e) ​​\ gamma_w} {1 + e}

долларов

$ \ gamma '= \ dfrac {G \ gamma_w + e \ gamma_w - \ gamma_w - e \ gamma_w} {1 + e} $

$ \ gamma '= \ dfrac {G \ gamma_w - \ gamma_w} {1 + e}

долларов

$ \ gamma '= \ dfrac {(G - 1) \ gamma_w} {1 + e}

долларов США

Удельный вес воды
γ = 9.81 кН / м 3
γ = 9810 Н / м 3
γ = 62,4 фунт / фут 3

Типичные значения удельной массы для грунта

Тип почвы γ sat (кН / м 3 ) γ d (кН / м 3 )
Гравий 20–22 15–17
Песок 18–20 13–16
Ил 18–20 14–18
Глина 16–22 14–21

Плотность почвы

Термины «плотность» и «удельный вес» в механике грунтов взаимозаменяемы.Хотя это и не критично, важно, чтобы мы это знали. Чтобы найти формулу для плотности, разделите формулу единицы веса на гравитационную постоянную g (ускорение свободного падения). Но вместо g в формуле используйте плотность воды, заменяющую единицу веса воды.

Основная формула плотности (примечание: m = Вт / г)
$ \ rho = \ dfrac {m} {V} $

Следующие формулы взяты из единиц веса грунта:

$ \ rho = \ dfrac {(G + Se) \ rho_w} {1 + e} $

$ \ rho = \ dfrac {(G + Gw) \ rho_w} {1 + e}

долларов США

$ \ rho_d = \ dfrac {G \ rho_w} {1 + e}

долл. США

$ \ rho_ {sat} = \ dfrac {(G + e) ​​\ rho_w} {1 + e}

долларов США

$ \ rho '= \ dfrac {(G - 1) \ rho_w} {1 + e}

долларов США

Где
м = масса грунта
V = объем грунта
W = вес грунта
ρ = плотность грунта
ρ d = сухая плотность грунта
ρ насыщ. = насыщенная плотность грунта
ρ '= плавучесть почвы
ρ w = плотность воды
G = удельный вес твердых частиц почвы
S = степень насыщения почвы
e = коэффициент пустотности
w = содержание воды или влажность

Плотность воды и гравитационная постоянная
ρ w = 1000 кг / м 3
ρ w = 1 г / куб.см
ρ w = 62.4 фунта / фут 3
g = 9,81 м / с 2
g = 32,2 фут / с 2

Относительная плотность

Относительная плотность - это показатель, который количественно определяет степень плотности между наиболее рыхлым и наиболее плотным состоянием крупнозернистых почв.

Относительная плотность записывается в следующих формулах:

$ D_r = \ dfrac {e_ {max} - e} {e_ {max} - e_ {min}} $

$ D_r = \ dfrac {\ dfrac {1} {(\ gamma_d) _ {min}} - \ dfrac {1} {\ gamma_d}} {\ dfrac {1} {(\ gamma_d) _ {min}} - \ dfrac {1} {(\ gamma_d) _ {max}}}

долларов США

где:
D r = относительная плотность
e = текущий коэффициент пустотности грунта на месте
e max = коэффициент пустотности почвы в самом рыхлом состоянии
e min = коэффициент пустотности почвы на его наиболее плотное состояние
γ d = текущий сухой удельный вес грунта на месте
d ) мин. = сухой удельный вес грунта в его наиболее рыхлом состоянии
d ) max = сухой вес грунта в наиболее плотном состоянии

Обозначение сыпучего грунта по относительной плотности

D r (%) Описание
0–20 Очень рыхлый
20-40 Свободный
40-70 Средняя плотность
70–85 плотный
85–100 Очень плотная

.

Плотность, удельный вес и коэффициент теплового расширения

Плотность - это отношение массы к объему вещества:

ρ = м / В [1]

, где
ρ = плотность, обычно единицы [ г / см 3 ] или [фунт / фут 3 ]
м = масса, обычно единицы [г] или [фунт]
V = объем, обычно единицы [см 3 ] или [фут 3 ]

Чистая вода имеет максимальную плотность 1000 кг / м 3 или 1.940 снарядов / фут 3 при температуре 4 ° C (= 39,2 ° F).

Удельный вес - отношение веса к объему вещества:

γ = (м * г) / V = ​​ρ * г [2]

где
γ = удельный вес, ед. обычно [Н / м 3 ] или [фунт-сила / фут 3 ]
м = масса, обычно единицы [г] или [фунт]
g = ускорение свободного падения, обычно единицы [м / с 2 ] а значение на Земле обычно равно 9.80665 м / с 2 или 32,17405 фут / с 2
V = объем, типичные единицы [см 3 ] или [футы 3 ]
ρ = плотность, типичные единицы [г / см 3 ] или [фунт / фут 3 ]

Пример 1: Удельный вес воды
В системе SI удельный вес воды при 4 ° C будет:

γ = 1000 [кг / м3] * 9.807 [ м / с2] = 9807 [кг / (м2 с2)] = 9807 [Н / м3] = 9.807 [кН / м3]

В английской системе единицей измерения массы является снаряд [sl] , и она получается из фунт-сила, определив его как - масса, которая будет ускоряться со скоростью 1 фут в секунду в квадрате, когда на нее действует сила в 1 фунт :

1 [фунт f ] = 1 [сл] * 1 [фут / s2] и 1 [sl] = 1 [фунт f ] / 1 [фут / с2]

Плотность воды равна 1.940 сл / фут 3 при 39 ° F (4 ° C), а удельный вес в британских единицах измерения составляет

γ = 1,940 [сл / фут3] * 32,174 [фут / с2] = 1,940 [фунт f ] / ([фут / с2] * [фут3]) * 32,174 [фут / с2] = 62,4 [фунт f / фут3]

Подробнее о разнице между массой и весом

Онлайн-калькулятор плотности воды

Калькулятор ниже можно использовать для расчета плотности жидкой воды при заданных температурах.
Плотность на выходе указывается в г / см 3 , кг / м 3 , фунт / фут 3 , фунт / галлон (жидкий раствор США) и сл / фут 3 .

Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.

Плотность воды зависит от температуры и давления, как показано ниже:

См. Термодинамические свойства при стандартных условиях в разделе «Вода и тяжелая вода».
См. Также другие свойства Water при меняющейся температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , нормальной и тяжелой воды, точки плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, теплопроводность, температуропроводность и давление пара в газе -жидкое равновесие.
Для других веществ см. Плотность и удельный вес ацетона, воздуха, аммиака, аргона, бензола, бутана, диоксида углерода, монооксида углерода, этана, этанола, этилена, гелия, водорода, метана, метанола, азота. , кислород, пентан, пропан и толуол.
Плотность сырой нефти , плотность мазута , плотность смазочного масла и плотность авиационного топлива в зависимости от температуры.

Как показано на рисунках, изменение плотности не является линейным с температурой - это означает, что коэффициент объемного расширения воды не является постоянным во всем диапазоне температур.

Плотность воды, удельный вес и коэффициент теплового расширения при температурах, указанных в градусах Цельсия:

Для полной таблицы с удельным весом и коэффициентом теплового расширения - поверните экран!

[фунт м / фут 3 ] -0,68 2 5,9431
Температура Плотность (0-100 ° C при 1 атм,> 100 ° C при давлении насыщения)
Удельный вес Коэффициент теплового расширения
[° C] [г / см 3 ] [кг / м 3 ] [сл / фут 3 ]
[фунт м / галлон (жидкий раствор США)] [кН / м 3 ] [фунт f / фут 3 ] [ * 10 - 4 K -1 ]
0.1 0,9998495 999,85 1,9400 62,4186 8,3441 9,8052 62,419
1 0,9999017 999,90 1,9401 62,4218 8,3446 9,8057 62,422 -0,50
4 0,9999749 999,97 1,9403 62,4264 8.3452 9,8064 62,426 0,003
10 0,9997000 999,70 1,9397 62,4094 8,3429 1,9386 62,3719 8,3379 9,7978 62,372 1,51
20 0.9982067 998,21 1,9368 62,3160 8,3304 9,7891 62,316 2,07
25 0,9970470 997,05 1,9346 62,2436 8,3208 9,7777 62,244 2,57
30 0,9956488 995,65 1,9319 62,1563 8,3091 9.7640 +62,156 3,03
35 0,9940326 994,03 1,9287 62,0554 8,2956 9,7481 62,055 3,45
40 0,9 992,22 1,9252 61.9420 8.2804 9.7303 61.942 3.84
45 0.99021 990.21 +1,9213 61,8168 8,2637 9,7106 61,817 4,20
50 0,98804 988,04 1,9171 61,6813 8,2456 9,6894 61,681 4,54
55 0,98569 985,69 1,9126 61,5346 8,2260 9,6663 61.535 4,86 ​​
60 0,98320 983,20 1,9077 61.3792 8.2052 9,6419 65168 8,1831 9,6159 61,214 5,44
70 0,97776 977,76 1.8972 +61,0396 8,1598 9,5886 61,040 5,71
75 0,97484 974,84 1,8915 60,8573 8,1354 9,5599 60,857 5,97
80 0,97179 971,79 1.8856 60,6669 8,1100 9,5300 60,667 6.21
85 0,96861 968,61 1,8794 60,4683 8,0834 9,4988 60,468 6,44 9,4665 60,262 6,66
95 0,96189 961,89 1,8664 60.0488 8,0274 9,4329 60,049 6,87
100 0,95835 958,35 1,8595 59,8278 7,9978 9,3982 59,828 7,03
110 0,95095 950,95 1,8451 59,3659 7,9361 9,3256 59,366 8,01
120 0.94311 943,11 1,8299 58,8764 7,8706 9,2487 58,876 8,60
140 0, 926,13 1,7970 57,8164 7,7289 9,0822 57,816 9,75
160 0, 907,45 1,7607 56,6503 7,5730 8.8990 56,650 11,0
180 0,88700 887,00 1,7211 55,3736 7,4024 8,6985 53.9790 7.2159 8.4794 53.979 13.9
220 0.84022 840.22 1,6303 52,4532 7,0120 8,2397 52,453 16,0
240 0,81337 813,37 1,5782 50,7770 6,7879 7,9764 50,777 18,6
260 0,78363 783,63 1,5205 48,9204 6,5397 7,6848 48.920 22,1
280 0,75028 750,28 1,4558 46,8385 6,2614 7,3577 46,838 6,9837 44,457
320 0,66709 667,09 1,2944 41.6451 5,5671 6,5419 41,645
340 0,61067 610,67 1,1849 38,1229 5,0963 5,9886 38,123
360 0,52759 527,59 1,0237 32,9364 4,4030 5,1739 32,936
373,946 0.3220 322,0 0,625 20,102 2,6872 3,1577 20,102


Таблица плотности воды, удельного веса и коэффициента теплового расширения при температурах, 000 в градусах Фаренгейта, для полного веса 7 9000 и коэффициент теплового расширения - поверните экран!

3,66 6,31 878 6,878 824 67168 5,663 5,663 5,663
Температура Плотность (0-212 ° F при 1 атм,> 212 ° F при давлении насыщения)
Удельный вес Коэффициент теплового расширения
[° F] [фунт м / фут 3 ] [сл / фут 3 ] [фунт м / галлон (США) жидкий)] [г / см 3 ] [кг / м 3 ] [фунт f / фут 3 ] [кН / м 3 ] [ * 10 -4 K -1 ]
32.2 62,42 1,9400 8,3441 0,99985 999,9 62,42 9,805 -0,68
34 62,42 9,806 -0,50
39,2 62,43 1,9403 8,3452 0,99997 1000,0 62.43 9,806 0,0031
40 62,42 1,9402 8,3450 0,99995 1000,0 62,42 9168 62,42 9168 0,99970 999,7 62,41 9,804 0,88
60 62,36 1,9383 8.3369 0,99898 999,0 62,36 9,797 1,59
70 62,30 1,9364 8,3283 0,9364 8,3283 0,9364 8,3283 0,9168 62,22 1,9338 8,3172 0,99662 996,6 62,22 9,773 2,72
90 62.11 1,9306 8,3035 0,99498 995,0 62,11 9,757 3,21
100 62,00 168
110 61,86 1,9227 8,2697 0,99093 990,9 61,86 9.718 4,08
120 61,71 1,9181 8,2499 0,98855 988,6 61,71 988,6 61,71 9,694 130168 4,46 9,694 4,46 9,694 4,46 986,0 61,55 9,669 4,81
140 61,38 1,908 8.205 0,9832 983,2 61,38 9,642 5,16
150 61,19 1,902 8,180 0,9168 61,00 1,896 8,154 0,9771 977,1 61,00 9,582 5,71
170 60.79 1,890 8,127 0,9738 973,8 60,79 9,550 6,05
180 60,58 1,88168
190 60,35 1,876 8,068 0,9668 966,8 60,35 9.481 6,57
200 60,12 1,869 8,037 0,9630 963,0 60,12 9,444 6,7162 958,4 59,83 9,398 7,07
220 59,63 1,853 7,971 0.9552 955,2 59,63 9,367
240 59,10 1,837 7,900 0,9467 946,7 7,824 0,9375 937,5 58,53 9,194
280 57,93 1.800 7,744 0,9279 927,9 57,93 9,100
300 57,29 1,781 7,659 55,59 1,728 7,431 0,8905 890,5 55,59 8,733
400 53.67 1,668 7,175 0,8598 859,8 53,67 8,432
450 51,45 1,599 500 48,92 1,521 6,540 0,7836 783,6 48,92 7,685
550 45.95 1,428 6,142 0,7360 736,0 45,95 7,218
600 42,36 1,317 625 40,12 1,247 5,363 0,6426 642,6 40,12 6,302
650 37.35 1,161 4,993 0,5982 598,2 37,35 5,867
675 33,79 1,050 33,79 1,050

Плотность воды и удельный вес при 1000 psi и данных температурах:

Для полного стола с удельным весом - поверните экран!

1,9 9665
Температура Плотность (при 1000 psi или 68.1 атм) Удельный вес
[° C] [° F] [г / см 3 ] 23 [кг / ] [сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (лик США)] [ фунт f / фут 3 ] [кН / м 3 ]
0.0 32 1,0031 1003,1 1,946 62,62 8,371 62,62 9,837
4,4 40 62,62 9,837
10,0 50 1,0031 1003,1 1,946 62,62 8,371 62.62 9,837
15,6 60 1.0024 1002,4 1,945 62,58 8,366 62,58 9,8165 62,50 8,355 62,50 9,818
26,7 80 0,9999 999,9 1.940 62,42 8,344 62,42 9,805
32,2 90 0,9981 998,1 1,937 998,1 1,937 62168 8,316 8,316 0,9962 996,2 1,933 62,19 8,314 62,19 9,769
43,3 110 0.9944 994,4 1,928 62,03 8,292 62,03 9,744
48,9 120 0,9912 120
54,4 130 0,9888 988,8 1,919 61,73 8,252 61,73 9.697
60,0 140 0,9864 986,4 1,914 61,58 8,232 61,58 98165 9,673 8,207 61,39 9,644
71,1 160 0,9803 980,3 1,902 61.20 8,181 61,20 9,614
76,7 170 0,9768 976,8 1,895 60,98 8,1168 973,1 1,888 60,75 8,121 60,75 9,543
87,8 190 0.9696 969,6 1.881 60,53 8,092 60,53 9,509
93,3 200 0,9661
121,1 250 0,9456 945,6 1,835 59,03 7,891 59,03 9.273
148,9 300 0,9217 921,7 1,788 57,54 7,692 57,54 9,039 7,463 55,83 8,770
204,4 400 0,8636 863,6 1,676 53.91 7.207 53.91 8.469
260,0 500 0,7867 786,7 1,526 49,11 6,5164 точка


Плотность воды и удельный вес при 10 000 фунтов на кв. дюйм и заданных температурах:

Для полного стола с удельным весом - поверните экран!

64,4 62,4
Температура Плотность (при 10 000 psi или 681 атм) Удельный вес
[° C] [° C] [г / см 3 ] [кг / м 3 ] [сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (жидк. США)] [фунт f / фут 3 ] [кН / м 3 ]
0.0 32 1,033 1033 2,004 64,5 8,62 64,5 10,13
4,4 40 10,12
10,0 50 1,031 1031 2.000 64,4 8,60 64.4 10,11
15,6 60 1,029 1029 1,997 64,3 8,59 64,3 10,09 64,1 8,58 64,1 10,08
26,7 80 1,026 1026 1,990 64.0 8,56 64,0 10,06
32,2 90 1,024 1024 1,986 63,9 8,54 63,9 8,54 63,9 1021 1,982 63,8 8,52 63,8 10,02
43,3 110 1,019 1019 1.977 63,6 8,51 63,6 9,99
48,9 120 1,017 1017 1,973 63,5 1,014 1014 1,968 63,3 8,46 63,3 9,94
60,0 140 1.011 1011 1,962 63,1 8,44 63,1 9,92
65,6 150 1,008 1008
71,1 160 1,005 1005 1,951 62,8 8,39 62,8 9,86
76.7 170 1,002 1002 1,945 62,6 8,37 62,6 9,83
82,2 180 9,80
87,8 190 0,996 996 1,932 62,2 8,31 62.2 9,77
93,3 200 0,992 992 1,926 62,0 8,28 62,0 9,73
60,8 8,13 60,8 9,55
148,9 300 0,953 953 1,849 59.5 7,95 59,5 9,35
176,7 350 0,930 930 1.805 58,1 7,716,16 905 1,756 56,5 7,55 56,5 8,88
260,0 500 0,847 847 1.643 52,9 7,07 52,9 8,31
315,6 600 0,774 774 1,501 48,3 галлон основан на 7,48 галлона на кубический фут .

  • 1 галлон (жидкий раствор США) = 3,7854 л = 0,8327 галлона (Великобритания) = 0,8594 галлона (сухой раствор США) = 0,1074 галлона (сухой раствор США) = 0,4297 упак. (Сухой раствор США) = 4 кварты (жидкий раствор США) = 8 пунктов (США) liq) = 16 c (США) = 32 gi (жидкий раствор США) = 128 жидких унций (США) = 1024 жидких унций (США) = 3.7854x10 -3 м 3 = 0,1337 футов 3 = 4,951x10 -3 ярдов 3

Для преобразования плотности в кг / м 3 в другие единицы плотности - или между единицами измерения - используйте приведенные ниже значения преобразования:

  • 1 кг / м 3 = 1 г / л = 0,001 кг / л = 0,000001 кг / см 3 = 0,001 г / см 3 = 0,99885 унций / фут 3 = 0,0005780 унций / дюйм 3 = 0,16036 унций / галлон (Великобритания) = 0,1335 унций / галлон (жидкий раствор США) = 0.06243 фунт / фут 3 = 3,6127x10-5 фунт / дюйм 3 = 1,6856 фунт / ярд3 = 0,010022 фунт / галлон (Великобритания) = 0,008345 фунт / галлон (жидкий раствор США) = 0,00194032 сл / фут 3 = 0,0007525 тонна (длинная) / ярд 3 = 0,0008428 тонна (короткая) / ярд 3

См. также конвертер плотности

Пример 2: Плотность воды в унциях / дюйм 3
Плотность воды при температуре 20 o C составляет 998,21 кг / м 3 (таблица выше). Плотность в единицах унций / дюйм 3 может быть вычислена с помощью приведенного выше значения преобразования в

998.21 [кг / м 3 ] * 0,0005780 [(унция / дюйм 3 ) / (кг / м 3 )] = 0,5797 [унция / дюйм 3 ]

Пример 3: Масса горячего Вода
Бак объемом 10 м 3 содержит горячую воду с температурой 190 ° F. Из приведенной выше таблицы плотность воды при 190 ° F составляет 966,8 кг / м 3 . Можно рассчитать общую массу воды в баке

10 [м 3 ] * 966,8 [кг / м 3 ] = 9668 [кг]

См. Также гидростатическое давление в воде и энергию, запасенную в горячей воде

.

ПРИЛОЖЕНИЕ 2 - Объемные отношения в грунтовых материалах

ПРИЛОЖЕНИЕ 2 - Объемные отношения в грунтовых материалах


(Источник Skaven-Haug 1972)

Твердые вещества

Твердые вещества в почвенных материалах варьируются от органических веществ в чистый растительный материал до минерального вещества в чистых песках, глинах или илах. В то же время удельный вес твердых тел, D с , изменяется от D o в чистом растительном материале до D м в минеральном веществе.Для большинство почвенных материалов, содержащих как органические, так и минеральные вещества в твердых тел числовое значение D s является выражением отношения органическое вещество / минеральное вещество.

Удельный вес D o для чистых органических дело не постоянное. Это зависит от среды обитания, присутствующих видов и степени разложение. Основные компоненты, целлюлоза и лигнин, обладают специфическими свойствами. массой 1,52 и 1,46 т / м 3 соответственно.Литература по объект дает удельный вес 1,53 для свежей ели и сосны, а значения для других материалов - от 1,47 до 1,52. По практической оценке

D o = 1,50 т / м 3
Также удельный вес D м для чистого минеральное вещество непостоянно. Может варьироваться от 2,3 т / м 3 для гипса. до 5,2 т / м 3 , например, для гематита. В минеральных почвах большое количество минералов, а средний удельный вес колеблется между гораздо более узкие пределы.Сбор данных из многих лабораторий механики грунтов. показывает разницу между 2,65 и 2,85, и, вообще говоря, меньшее значение находится в крупнозернистом и однородном песке, значения которого растут по мере увеличения материал становится. Для норвежских песчаных и глинистых отложений удельный вес находится между следующими пределами, которые для практических целей мы также выберите:
D м = 2,7 т / м 3 ± 2% для песок
D м = 2,8 т / м 3 ± 3% для глина
Удельный вес в сухом состоянии D d - это вес сухих веществ в единице объема, т / м 3 Для групп материалов с приблизительно постоянный удельный вес для их твердых тел, D d является пригодное выражение для соотношений веса и объема.Эта мера используется в международной механике почв как характеристика количества минерального иметь значение. Норвежская болотная ассоциация уже много лет использует соответствующие измерить г / дм 3 в сухом торфе при исследовании болот и D d можно рассматривать как подходящий показатель плотности уплотнения в торфяно-коровой материал.

Для большой группы почвенных материалов с различными характеристиками плотность твердых тел D s , D d не подходит в качестве основы для сравнения.

Вода

Количество воды, которое содержится в почвенном материале или в котором определенные обстоятельства могут содержать, в зависимости от физических свойств материал. Поэтому содержание воды используется в качестве основы для сравнения почвы. параметры и как выражение их качества. Содержание воды может быть выражается в виде соотношений:

вес воды / вес сухого вещества (w)
вес воды / общий вес (w tot )
объем воды / общий объем (w v )
Используются все три соотношения, и это иногда приводило к спутанность сознания.Как объяснялось выше, весовые выражения не всегда надежны, поскольку основа для сравнения.

Соотношение веса w было принято в международном механика грунтов и широко используется в технике. Для групп материалов с примерно тот же D s , w - исправная основа сравнения. Для материалов с переменным D s , w не является подходящим параметром для Справка. Это можно проиллюстрировать крайним примером. Кубический метр насыщенная норвежская глина содержит 0.5 м 3 воды, а w = 0,36 = 36 процентов. Торф (сельскохозяйственный торф в тюках) с той же водой содержание 0,5 м 3 , w = 5,0 = 500 процентов.

Соотношение веса w к использовалось долгое время время в терминологии торфа, а для торфа примерно с таким же весом сухого это дает удобную основу для сравнения. Одним из преимуществ является то, что w - всегда меньше 100 процентов.

Объемное соотношение w v определяется взвешивание известного объема до и после сушки. Причина определения объема лишняя работа, но они позволяют определить как w v , так и D d . Если известно D s , вес и объем отношения могут быть рассчитаны в 3-фазной системе воды, твердых частиц и воздух.

Некоторые технические расчеты требуют количества воды и, следовательно, из ш в .Искусственная сушка материалов и определение тепловые параметры являются примером. Поскольку w v также является хорошей основой для сравнение, независимо от типа материала, его использование должно быть широко выступал.

Воздух

За исключением сельскохозяйственной литературы, содержание воздуха в почве редко используемый. Вероятно, это из-за его незначительного веса, так что он должен быть указан как том. Содержание воздуха в почве часто является прямым показателем определенных свойств, таких как низкий удельный вес, низкая теплопроводность, и большая емкость для поглощения воды.

Формулы

Соотношения веса и объема могут быть получены из единицы объема (Рис.36). Вот обзор формул, которые подходят для практических использование:

Обозначения

Вт

соотношение веса воды и сухого вещества

Вт до

соотношение веса воды к общему весу

w v

отношение объема воды к общему объему

Д

насыпная плотность влажного материала

Д Д

удельный вес сухого материала (сухая плотность)

D с

удельный вес твердых тел

с в

отношение сухого вещества к общему объему

п.

пористость

с об

степень насыщения

D o

удельный вес органического вещества

D м

удельный вес минерального вещества

или v

отношение объема органического вещества к общему объему

м в

отношение объема минерального вещества к общему объему

л в

соотношение объема воздуха к общему объему

или

отношение массы органического вещества к сухому

м

соотношение массы минерального вещества / сухого вещества

а

соотношение массы золы к сухому веществу


Для практических целей вес воздуха считается нулевым, и удельный вес воды за единицу.Числовые значения объема и вес воды, таким образом, равны, и множитель 1 опущен в формулы. Соотношения веса, пропорции объема, пористости и степени насыщение - это безразмерные величины, которые при умножении на 100 дают проценты. Удельный вес исчисляется в тоннах на кубический метр. (т / м 3 ).

ширина v = (глубина x ширина) ÷ (ширина + 1)

(1)

D d = D ÷ (w + 1)

(2)

w v = D d x w

(3)

D d = D - w v

(4)

w v = D x w tot

(5)

D d = D (1 - ширина до )

(6)

w v = (D d x w до ) ÷ (1 - w до )

(7)

с v = D d ÷ D с

(8)

l v = (1 - w v ) - s v

(9)

с r = w v ÷ n = (w v x D с ) ÷ (D с - D d )

(10)


Если объемы измерены и известно D s , можно найти объемные соотношения в трехфазной системе, твердых частиц, воды и воздуха.Если материал насыщен водой, у нас есть только две фазы, твердые вещества и вода, и отношения проще.
Тогда s v = 1 - w v

Если объемы измерены, можно рассчитать D s . Мы вернемся к этому позже.

Связь между w - и w v , уравнение (7) показано на рисунке 36 для ряда органических материалов с D s = 1,55 т / м 3 и известные значения для D d .В две самые высокие кривые относятся к слабо разложившемуся сфагновому торфу на болотах. В кривая, для которой D d = 0,10 т / м 3 соответствует той же торф в сельскохозяйственных тюках для защиты от замерзания под железнодорожными путями. Нижняя кривая с D d = 0,25 т / м 3 относится к тюкам с кора под автомобильными и железными дорогами. Для матирования коры на месте с измеренной w tot = 0,72, округленными цифрами можно считать w v = 0.65, l v = 0,19 и s v = 0,16.

Рис. 36. Соотношение веса и объемные отношения для ряда органических материалов с известными удельными гравитации

Рис. 37. Кубическая единица грунта. материал с четырьмя фазами: органическое вещество, минеральное вещество, вода и воздух

Пропорции органических и минеральных веществ

Сухой материал может содержать как органические, так и минеральные вещества, и D s - средний удельный вес.Осталось определить количественные отношения между органическими и минеральными веществами.

Учитывая рисунок 37 и настройку веса и объема уравнения получаем:

o v = D d (D м - D с ) ÷ D с (D м - D o )

(11)

o v + m v = s v

м v = D d (D s - D o ) ÷ D с (D м - D o )

(12)


Таким же образом имеем следующие взаимоотношения для вес:

o = D o (D м - D с ) ÷ D s (D м - D o )

(13)

o + v = 1

м = D м (D с - D o ) ÷ D s (D м - D o )

(14)


Теперь у нас есть полный обзор объема и веса отношения в 4-фазной системе: органическое вещество, минеральное вещество, вода и воздух.Мы можем легко измерить D d и D o , а D м может быть считается известным. Осталось определить ключевое значение D с .

Удельный вес твердого вещества

Существует несколько методов определения D с .

а.

Пикнометр Метод в принципе может использоваться для всех материалы почвы, но требует много времени, особенно когда дело доходит до удаления последние остатки воздуха в органических веществах и не подходят для повседневного использования расследования.

г.

Для связных грунтов, насыщенных водой, например ил, глина и бурового раствора можно легко приготовить соизмеримые объемы и D s можно рассчитано. Измерение объема также может производиться взвешиванием на воздухе. и при погружении в воду. Этот метод подходит для рутинных исследований, но ограничивается вышеупомянутыми насыщенными материалами.

г.

Массовое соотношение можно найти химическим путем, а затем D s рассчитано по формуле (13). Различают прямые и косвенные методы. Прямые методы заключаются в удалении органических веществ. и взвешивая то, что осталось. Лучший метод - розжиг, который будет описано позже.Косвенные методы основаны на предположении, что конкретный элемент содержится в органическом веществе в постоянной пропорции, так что органическое вещество можно рассчитать для этого элемента с помощью фактор общения. Эти методы, как и прямые, не совсем точны, но должен считаться наиболее надежным для грунтовых материалов с умеренным содержание органического вещества.


.

Оценка характеристической кривой почва-вода для связных грунтов со значением метиленового синего

В этом исследовании описан новый тест на метиленовый синий для измерения значения метиленового синего (MBV) для 15 связных грунтов и установлена ​​взаимосвязь между MBV и индексом пластичности (PI) и между MBV и процентом прохождения через сито № 200 (P 200 ), соответственно. После этого были построены характеристические кривые почва-вода (SWCC) для 15 связных грунтов на основе модели Фредлунда и Синга с помощью испытания прижимной пластиной.Затем уравнения регрессии для определения четырех подгоночных параметров в ранее разработанном уравнении SWCC с использованием измеренного MBV были использованы для создания SWCC для связных грунтов. В то же время, параметр уклона, b f , в уравнениях SWCC, как было обнаружено, связан с влажностью связных грунтов. Более высокое значение b f указывает на то, что материал более чувствителен к влаге. Кроме того, более низкий MBV / PI / P 200 показывает более низкое всасывание при той же степени насыщения; с другой стороны, более высокий MBV / PI / P 200 означает более высокое всасывание.Следовательно, влагоудерживающая способность связных грунтов увеличивается с увеличением MBV, PI и P 200 . Наконец, предложенный метод оценки был подтвержден путем сравнения четырех определенных подгоночных параметров из MBV и испытания прижимной пластины.

1. Введение

Характеристическая кривая «почва-вода» (SWCC) представляет собой графическую взаимосвязь между матрицей всасывания и содержанием воды. Это одна из основных характеристик частично ненасыщенных грунтов, и как таковая она полезна для оценки других свойств грунта при решении инженерных задач в этих трех классических областях: поток жидкости, сжимаемость и прочность на сдвиг [1].Например, при моделировании потока ненасыщенной влаги под дорожным покрытием необходимо знать гидравлическую проводимость материалов основания и земляного полотна в зависимости от содержания влаги. Поскольку экспериментальные процедуры, в которых испытание фильтровальной бумагой или прижимной пластиной, используемое для определения соотношения содержания воды на всасе и всасывании, являются трудоемкими и дорогостоящими [2, 3], в недавних исследованиях основное внимание уделялось оценке метод прогнозирования SWCC с использованием некоторых математических функций [1, 4, 5].Однако форма кривой зависит от многих основных свойств грунта, таких как процент прохождения через сито № 200 (P 200 ), индекс пластичности (PI) и факторы воздействия окружающей среды, которые определяют напряженное состояние, уровень уплотнения и температура. Трудно найти правильное и удобное математическое выражение для его описания. Однако несколько аналитических функций для прогнозирования SWCC можно найти в некоторых источниках [6–9]. Прогнозирующие переменные, в том числе ситовый анализ и свойства индекса, демонстрируют значительную изменчивость в этой литературе [10].По-прежнему необходимы некоторые трудоемкие и материалоемкие эксперименты, включая ситовый анализ и пределы Аттерберга. В этом случае Hakan Sahin et al. предложили новый метод оценки SWCC для смесей несвязанных заполнителей на основе значения метиленового синего (MBV) и процентного содержания мелких частиц (PFC) [11–13].

Метиленовый синий имеет большую полярную органическую молекулу C 16 H 18 N 3 S + , которая может адсорбироваться на отрицательно заряженных поверхностях глинистых минералов.Количество адсорбированного метиленового синего зависит от площади поверхности частиц глины. Чем больше метиленовый синий адсорбируется частицами глины, тем ярче будет раствор метиленового синего. Адсорбированный метиленовый синий можно определить количественно путем оценки изменения цвета раствора метиленового синего. В то же время SWCC для связных грунтов обнаруживают их водоудерживающую способность, которая зависит от удельной поверхности частиц глины [9,14–18]. Основываясь на приведенном выше описании метиленового теста, MBV отражает удельную поверхность частиц почвы.Следовательно, SWCC для связных грунтов можно предсказать, используя значение метиленового синего. После того, как соотношение между четырьмя подгоночными коэффициентами моделей Фредлунда и Ксинга, которые показаны в (1), и MBV построено, будут определены SWCC для связных грунтов: где - объемное содержание воды; - объемное содержание насыщенной воды; - матричный отсос; и являются подгоночными коэффициентами, которые в первую очередь зависят от величины поступления воздуха, скорости извлечения воды из почвы, остаточного содержания воды и всасывания, при которых возникает остаточное содержание воды, соответственно.Как только эти четыре подгоночных параметра определены, SWCC для конкретного грунта может быть установлен автоматически.

Это исследование организовано следующим образом: в следующем разделе представлен новый метод испытания метиленового синего, и были завершены испытания 15 связных грунтов на метиленовый синий. Впоследствии была предложена и проанализирована корреляция между PI и MBV и между P 200 и MBV, соответственно. В следующем разделе строятся корреляции между четырьмя подгоночными параметрами модели Фредлунда и Синга и MBV, которые впоследствии были проверены.В последнем разделе резюмируются основные результаты этого исследования.

2. Эксперименты и материалы

На основании предыдущих обсуждений в этом разделе представлены лабораторные эксперименты и материалы, необходимые для разработки подгоночных моделей для SWCC.

2.1. Лабораторные эксперименты

Испытание на сите и испытание на предел Аттерберга использовали для определения распределения частиц и индекса пластичности соответственно. В то же время максимальная плотность в сухом состоянии и оптимальное содержание влаги, которые были использованы для формования образцов почвы для испытания прижимной плиты, были получены в соответствии с тестом Проктора.После этого испытание прижимной пластиной использовалось для измерения всасывания матрикса для различного содержания влаги. Кроме того, тест с метиленовым синим использовался для определения количества мелких частиц в 15 связных грунтах. Тест с прижимной пластиной и тест с метиленовым синим кратко представлены в следующих разделах.

2.2. Новый тест с метиленовым синим

Традиционный тест с метиленовым синим, указанный в ASTMC837 [19], использовался для определения содержания активной глины в тонкодисперсных материалах путем измерения содержания красителя метиленового синего, адсорбированного частицами глины.Этот традиционный метод тестирования содержит эмпирический критерий проверки, при котором процедуры тестирования необходимо повторять до тех пор, пока не будет обнаружено голубое кольцо. Это отнимает много времени и требует наличия опытного персонала для проведения теста, который аналогичен методу текущей спецификации Test Methods of Aggregate for Highway Engineering в Китае. Недавно У. предложил новый метод испытаний, который измеряет MBV почв с использованием раствора метиленового синего с помощью колориметра.R. Grace Inc. Преимущество этого нового метода испытаний в том, что он относительно простой, недорогой и повторяемый. На рисунке 1 показано устройство, которое состоит из колориметра, пипетки на 150 мк л с разрешением 1 мк л, капельницы, шприца на 3 мл, двух пластиковых бутылок емкостью 50 м л, двух бутылок для образцов, метилена. синий раствор и дистиллированная вода. Кроме того, необходимы фильтр шприца 0,20 мкм м, портативные весы с разрешением 0,01 г, стандартное сито и небольшая стеклянная трубка.


Сначала образец пропускали через сито 2 мм и брали образец весом 20,00 г в качестве исходного количества. Образец добавляли в пластиковую бутыль с 30,00 мл калиброванного раствора метиленового синего. Смесь встряхивали 1 мин, выдерживали 3 мин и снова встряхивали еще 1 мин. После этого смесь фильтровали через фильтр 2,0 мкм мкм с использованием шприца. И смесь, прошедшая через фильтр, использовалась до конца эксперимента. Затем 30,00 мл отфильтрованного раствора добавляли в пластиковую бутылку и заполняли дистиллированной водой до общего количества 45.Собрано 00 г. Вновь смешанный раствор помещали в небольшую стеклянную трубку, вставленную в колориметр, и MBV можно было измерить с помощью колориметра. Считается, что 20,00 г является допустимым количеством пробы, и значение считывания является действительным, если показание MBV меньше 7,50 мг / г. Размер образца должен быть уменьшен вдвое до 10,00 г, и процедуру испытания следует повторить, если MBV превышает 7,50 мг / г. Следует отметить, что общее время тестирования для измерения составляет менее 10 минут.Значение метиленового синего (мг / г) можно рассчитать по формуле (2) после завершения испытаний метиленового синего: где - начальная концентрация раствора метиленового синего; - конечная концентрация раствора метиленового синего; - масса раствора метиленового синего; - вес образцов почвы. Среднее значение трех испытаний для одного грунта выбрано в качестве окончательного MBV.

В таблице 1 показано количество почвы и соответствующий допустимый диапазон MBV. Следует отметить, что метод с использованием раствора метиленового синего с колориметром не подходит для почв в случае, если MBV превышает 60 мг / г.В этом случае следует принять традиционный метод измерения MBV [19, 20].


Вес почвы (г) Диапазон MBV (мг / г)

20 0
10 7,5 ≤ МБВ <15
5 15 ≤ МБВ <30
2,5 30 ≤ МБВ <60

.

Смотрите также