Защита от закипания котла


Защита от перегрева твердотопливного котла

Массовое использование котельного оборудования, работающего на твердом топливе, ставит перед владельцами частных домов особые требования. Несмотря на технический прогресс, позволивший довести современные твердотопливные отопительные приборы до совершенства, работа подобного оборудования несет в себе определенную опасность. Сбои в работе, нарушения условий эксплуатации отопительной техники могут стать причинами выхода оборудования из строя в разгар отопительного сезона. В худшем случае, возникновение внештатных ситуаций с работающим агрегатом может обернуться серьезными травмами для обитателей дома, ущербом жилым строениям.

В этом аспекте одним из важнейших условий безопасной эксплуатации станет защита твердотопливного котла от перегрева. Точное соблюдение правил безопасности эксплуатации нагревательной техники, наличие дееспособной автоматики и приборов контроля, позволят обеспечить вам необходимую защиту от непредвиденных ситуаций.

Рассмотрим детальнее, на чем базируется защита котельного оборудования от перегрева. С чем может быть связано кипение теплоносителя в нагреваемом контуре и каковы последствия такого ЧП.

Причины, в результате которых может возникнуть перегрев твердотопливного котла

Еще на стадии выбора и покупки важно учитывать эксплуатационные характеристики обогревательного прибора. Многие модели, которые сегодня представлены в продаже, имеют встроенную систему защиты от перегрева. Работает она или нет – вопрос второй. Однако необходимо придерживаться определенных знаний и навыков, рассчитывая создать у себя дома эффективную и безопасную систему автономного отопления.

От условий эксплуатации зависит надежная работа нагревательного агрегата. При явных нарушениях технологических параметров отопительного оборудования и злоупотреблением стандартными правилами безопасности, высокая вероятность возникновения аварийной ситуации.

Для справки: превышение температуры в топочной камере допустимых параметров может вызвать кипение котловой воды. Результатом бесконтрольного процесса становится разгерметизация отопительного контура, разрушения корпуса теплообменника. В случае с водогрейными котлами при перегреве возможен взрыв.

[adinserter block=»9″][adinserter block=»20″]

Предупредить возможные негативные последствия можно еще на стадии монтажа твердотопливного котла. Правильная обвязка отопительного аппарата станет залогом вашей безопасности и надежной работы агрегата в будущем.

Если говорить детально, то в каждом случае система защиты твердотопливного котла имеет свою специфику и особенности. Каждая система отопления имеет свои плюсы и минусы. К примеру:

  • Когда речь идет о твердотопливных котлах с естественной циркуляцией теплоносителя, необходимо позаботиться о безопасности и работоспособности отопительного оборудования еще во время монтажа. Трубы в системе устанавливаются металлические. Причем диаметр таких труб должен превышать диаметр труб, используемых для прокладки контура с принудительной циркуляцией теплоносителя. Датчики, установленные на водяном контуре, будут сигнализировать о возможном перегреве теплоносителя. Предохранительный клапан и расширительный бак играют роль компенсатора, снижая избыточное давление в системе.

Существенным минусом гравитационной системы отопления является отсутствие эффективного механизма регулировки рабочих режимов твердотопливных котлов.

  • Большие технологические возможности для потребителей предоставляют двухконтурные твердотопливные котлы, работающие с принудительной циркуляцией теплоносителя в системе. Уже только наличие второго контура существенно увеличивает возможность регулировать температуру нагрева котловой воды. Единственный минус в работе такой системы является работающий насос, который может внести своей работой сложности при эксплуатации отопительной системы.

Это связано с тем, что при отключении электричества, насос перестает выполнять свои функции. Остановка циркуляционного процесса и инерционность нагревательных котлов на твердом топливе могут привести к перегреву нагревательного агрегата. Если котельная техника не оснащена бесперебойником, ситуация с отключением электричества чревата крайне неприятными последствиями.

Эффективная защита от перегрева работающего твердотопливного котла должна базироваться на механизме съема избыточного тепла, вырабатываемым нагревательным прибором.

Какие существуют способы защиты отопительной техники от перегрева

[adinserter block=»10″][adinserter block=»21″]

Компании – производители стараются в целях повышения потребительской привлекательности своих товаров, вносить в технический паспорт котельного оборудования любые гарантии его безопасности. О средствах защиты отопительного котла от закипания, непосвященный потребитель не имеет малейшего представления.

Существуют на данный момент следующие способы обеспечения защиты твердотопливных агрегатов, используемых для автономных систем отопления. Действенность каждого способа объясняется условиями эксплуатации котельной техники, и конструкционными особенностями агрегатов.

В большинстве случаев в техпаспорте на отопительный прибор производители рекомендуют использовать для охлаждения водопроводную воду. В ряде случаев отопительные котлы на твердом топливе оснащаются встроенными дополнительными теплообменниками. Встречаются модели котлов с выносными теплообменниками. Для предотвращения перегрева используется клапаном безопасности. Предохранительный клапан рассчитан только на сброс чрезмерного давления в системе, тогда как клапан безопасности при перегреве котла открывает доступ водопроводной воды.

Важно! При наличии чугунных нагревательных аппаратов, такая мера в корне неправильна. Чугунные теплообменники панически бояться резкого перепада температуры. Подача в контур холодной воды может привести к потере целостности корпуса теплообменника. (нагретый до высокой температуры чугун просто лопнет при контакте с холодной водой).

Превышение температуры теплоносителя отметки в 100 0С создает избыточное давление, открывающее клапан. Под действием водопроводной воды, которая подается под давлением в 2-5 бар, горячая вода из контура вытесняется холодной.

[adinserter block=»13″]

Первый аспект, который вызывает спорные моменты по поводу охлаждения водопроводной водой – отсутствие электричества, обеспечивающего работу насоса. Расширительная емкость не располагает достаточным объемом воды, достаточной для охлаждения котла.

Второй аспект, который отметает этот способ охлаждения, связан с использованием в качестве теплоносителя антифриза. При возникновении внештатной ситуации в канализацию вместе с поступающей холодной водой уйдет до 150 литров антифриза. Стоит ли этого такой способ защиты?

Наличие ИБП позволит сохранить в критической ситуации работу циркулирующего насоса, с помощью которого теплоноситель равномерно будет расходиться по трубопроводу, не успевая перегреваться. До тех пор пока хватит емкости аккумулятора, источник бесперебойной подачи питания гарантирует работу насоса. За это время котел не должен успеть нагреться до критических параметров, сработает автоматика, запускающая воду по запасному, аварийному контуру.

Другим способом выхода из критической ситуации станет установка аварийной схемы в обвязку твердотопливного агрегата. Отключение насоса может дублироваться работой запасного контура с естественной циркуляцией теплоносителя. Роль аварийного контура не в обеспечении обогрева жилых помещений, а только в возможности снять избыточную тепловую энергию при аварийной ситуации.

На заметку: установку аварийного контура можно заменить монтажом байпаса, который будет в крайних случаях отводить перегретую котловую воду в расширительный бак или тепловой аккумулятор.

[adinserter block=»11″]

Такая схема организации защиты нагревательного агрегата от перегрева надежна, проста и удобна в эксплуатации. Особых средств на ее оборудование и установку от вас не потребуется. Единственными условиями для работы такой защиты являются:

  • наличие расширительного бака или накопительной емкости в системе;
  • использование обратного клапана только лепесткового типа;
  • трубы второго контура должны быть большего диаметра, чем обычный отопительный контур.

Заключение

Оценивая технологические возможности современных твердотопливных котлов, следует думать не только о его рабочей мощности, но и заранее предусмотреть установку элементов защиты всей системы. Перегрев котла – явление частое и хорошо знакомое для обитателей частных домов. Использовать имеющиеся средства для обеспечения защиты позволит не только избежать внештатных ситуаций, но и продлит работу нагревательных агрегатов. Каждый сам воле выбирать средство и способ защиты. Одному будет достаточно установить электрический генератор, который вместе с ИБП не позволит остановиться циркуляции воды в системе. Другим владельцам частного дома, наоборот, потребуется в целях безопасности установить байпас или оборудовать запасной, аварийный контур.

По мнению специалистов, монтаж буферной емкости или установка байпаса являются наиболее действенными способами защиты системы отопления от перегрева.

На заметку: в США и в странах Европы эксплуатация твердотопливных аппаратов без буферной емкости запрещена.

Как защитить твердотопливный котел от перегрева и конденсата

Покупая и устанавливая твердотопливный котел, надо обязательно учесть особенности его эксплуатации, а именно – высокую вероятность перегрева в нештатных ситуациях, что может закончиться серьезной аварией и даже разрушением водяной рубашки агрегата (взрывом). Также немалый вред может нанести образование конденсата на стенках камеры сгорания, что случается при определенных режимах работы. Чтобы исключить подобные неприятности, должна быть предусмотрена защита твердотопливного котла от перегрева и конденсата, о чем и пойдет речь в нашей статье.

Как избавиться от конденсата в топке котла?

В котлах на твердом топливе может выпадать влага на внутренних стенках камеры сгорания. Это происходит, когда дрова уже разгорелись и вентилятор наддува (если он есть) работает в полную силу, а вода в системе отопления еще холодная.

От перепада температур и возникает конденсат, который, смешиваясь с продуктами горения, оседает на стенках камеры. Этот налет вызывает коррозию металла, вследствие чего срок службы котла значительно сокращается.

Примечание. Котлы с чугунным теплообменником не боятся коррозии, но, в свою очередь, чувствительны к резким перепадам температуры теплоносителя.

Решить данную проблему несложно, надо лишь включить в схему обвязки трехходовой термостатический клапан, настроенный на температуру теплоносителя 55—60 ºС, как показано на рисунке ниже. Действует защита твердотопливного котла от конденсата следующим образом: пока вода в котле не нагреется до заданной температуры, она циркулирует по малому контуру. После достаточного нагрева трехходовой клапан постепенно подмешивает воду из системы. Таким образом, перепада температур и конденсата в топке не возникает.

Внедрение в схему смесительного узла также защищает чугунный теплообменник от перепада температур теплоносителя, поскольку клапан не даст возможности попасть холодной воде внутрь теплогенератора.

Способы защиты котла от перегрева

Чрезмерный нагрев и закипание теплоносителя в агрегатах на твердом топливе может случиться в процессе эксплуатации по таким причинам:

  • отключение электроэнергии;
  •  вышла из строя электроника или датчик температуры, тогда может не отключаться вентилятор поддува или не закрываться дверца зольника;
  • воздушная заслонка, управляемая механическим термостатом с цепным приводом, закрылась не до конца.

Самый популярный метод защиты котла от перегрева при внезапных и частых отключениях электричества – это использование блоков бесперебойного питания либо электрических генераторов. Вообще, предусмотрительный хозяин, проживающий в местности с частыми отключениями электроэнергии, должен подумать об этом заблаговременно и принять все меры по обеспечению энергонезависимости своей системы отопления.

Совет. Чтобы система была энергонезависимой, надо ее рассчитать и сделать гравитационной с естественной циркуляцией теплоносителя. Отопительное оборудование нужно подобрать как можно проще, где отсутствует электронный блок управления и дутьевой вентилятор для котла.

Поскольку помимо аварийной ситуации с отключением электричества бывают и другие неисправности, приводящие к перегреву, то наличие независимых источников электроэнергии не панацея, нужны более универсальные решения. Вот они:

  • установка двухходового защитного клапана;
  • введение в схему обвязки байпаса для естественной циркуляции, отводящего тепло в буферную емкость или теплоаккумулятор.

Примечание. В некоторых моделях твердотопливных агрегатов внедрена защита от перегрева с помощью встроенного или выносного теплообменника. В случае аварии через него пропускается холодная вода из водопроводной сети. Такое решение можно использовать и тем, кто взялся изготовить котел на твердом топливе своими руками.

Использование клапана безопасности

Это не одно и то же, что предохранительный клапан. Последний просто сбрасывает давление в системе, но не охлаждает ее. Другое дело — клапан защиты от перегрева котла, что отбирает из системы горячую воду, а вместо нее подает холодную, из водопровода. Устройство – энергонезависимое, присоединяется к подающей и обратной магистрали, водопроводной сети и канализации.

При температуре теплоносителя свыше 105 ºС клапан открывается и благодаря давлению в водопроводе 2—5 Бар горячая вода вытесняется из рубашки теплогенератора и трубопроводов холодной, после чего уходит в канализацию. Как присоединяется клапан защиты твердотопливного котла, показано на схеме:

Недостаток этого способа защиты заключается в том, что она непригодна для систем, наполненных незамерзающей жидкостью. Кроме того, схема неприменима в условиях, когда отсутствует централизованное водоснабжение, ведь вместе с отключением электроэнергии прекратится и подача воды из скважины или бассейна.

Схема с аварийным байпасом

Практически не имеет недостатков представленная ниже схема защиты твердотопливного котла от перегрева:

При отключении электричества остановится циркуляционный насос, который во время работы поддавливает лепесток обратного клапана, чем препятствует движению воды через байпас. Но после остановки клапан откроется и теплоноситель продолжит циркуляцию естественным образом. Даже если в это время произойдет какая-то авария с твердотопливным котлом и нагрев воды не остановится, то тепло будет отводиться в буферную емкость, пока дрова в топке не прогорят.

Правда, здесь требуется выполнение нескольких условий:

  • наличие теплоаккумулятора или буферной емкости достаточного объема;
  • трубы котлового контура до емкости должны быть стальными, с увеличенными диаметрами и надлежащими для естественной циркуляции уклонами;
  • обратный клапан – только лепесткового типа, монтируемый в горизонтальном положении.

Заключение

Схему и способ защиты лучше подбирать в соответствии с условиями эксплуатации. В одном случае будет достаточно электрического генератора, в другом не обойтись без байпаса и буферной емкости. Но использование последней считается предпочтительным, в некоторых странах западной Европы эксплуатация теплогенераторов на твердом топливе без буферной емкости вообще запрещена.

Защита котла от закипания

fbvk
  • Игры
  • Обогреватели
    • Тепловые пушки
    • Пленочный обогреватель — плюсы и минусы
    • Учимся делать теплый плинтус
    • Современные системы отопления
    • Бак для горячей воды — мечта домоседа
    • Всё об обогревателях
    • Энергосберегающие обогреватели
    • Газовые
    • Масляные обогреватели
    • Инфракрасные
    • Конвекторы
  • Камины
    • О каминах
    • Применение камина для обогрева
    • Электрические камины с реалистичным видом
    • Дровяной камин в квартире?
    • Гостиная с камином
    • Декоративный камин
    • Искусственный камин
    • Что выбрать — камин или печь камин?
  • Электрообогрев
    • Теплые полы в доме — все за и против
    • Греющий кабель — особенности использования для защиты водопровода
    • Обогреватель зеркала
    • Защита от плесени
    • Электрический теплый пол
    • Теплолюкс Standart
    • Теплоскат
    • Теплодор
    • Тепловод
    • Система электрообогрева грунта
    • Трубы гофрированные
    • Полотенцесушители электрические
    • Терморегуляторы
  • Водяной обогрев
    • Водяной обогрев пола в загородном доме
  • Кондиционирование
    • Промышленные кондиционеры
    • Промышленные кондиционеры
  • Для коттеджа
  • Карта сайта
  • Контакты
  • Игры
  • Обогреватели
    • Тепловые пушки
    • Пленочный обогреватель — плюсы и минусы
    • Учимся делать теплый плинтус
    • Современные системы отопления
    • Бак для горячей воды — мечта домоседа
    • Всё об обогревателях
    • Энергосберегающие обогреватели
    • Газовые
    • Масляные обогреватели
    • Инфракрасные
    • Конвекторы
  • Камины
    • О каминах
    • Применение камина для обогрева
    • Электрические камины с реалистичным видом
    • Дровяной камин в квартире?
    • Гостиная с камином
    • Декоративный камин
    • Искусственный камин
    • Что выбрать — камин или печь камин?
  • Электрообогрев
    • Теплые полы в доме — все за и против
    • Греющий кабель — особенности использования для защиты водопровода
    • Обогреватель зеркала
    • Защита от плесени
    • Электрический теплый пол
    • Теплолюкс Standart
    • Теплоскат
    • Теплодор
    • Тепловод
    • Система электрообогрева грунта
    • Трубы гофрированные
    • Полотенцесушители электрические
    • Терморегуляторы
  • Водяной обогрев
    • Водяной обогрев пола в загородном доме

Безопасная эксплуатация котла - подготовка к подъему пара

Безопасная эксплуатация котла - Подготовка к подъему пара Главная || Дизельные двигатели || Котлы || Системы питания || Паровые турбины || Обработка топлива || Насосы || Охлаждение ||

Безопасная работа котла - подготовка к выпуску пара

Бойлер используется для нагрева питательной воды с целью производства пара.В энергия, выделяемая при горении топлива в топке котла, сохраняется (как температура и давление) в производимом паре.

Все котлы имеют топка или камера сгорания, где топливо сжигается, чтобы высвободить свою энергию. Воздух подается в топку котла, чтобы топливо сгорело. происходит. Большая площадь поверхности между камерой сгорания и вода позволяет энергии сгорания в виде тепла быть переносится в воду.

align = "left"> align = "left"> align = "left">
Эскиз мазутной системы котла

Должен быть предусмотрен барабан, в котором пар и вода могут разделяться.Там также должны быть различные штуцеры и элементы управления для обеспечения того, чтобы мазут, воздух и подача питательной воды соответствует потребности в паре. в заключение должно быть несколько приспособлений или креплений, обеспечивающих безопасность работа котла.

В процессе производства пара питательная вода поступает в котел, где он нагревается и становится паром. Питательная вода циркулирует от пара барабан с водой и нагревается в процессе. Несколько из питательная вода проходит через трубы, окружающие печь, т.е.е. водная стена и напольные трубы, где он нагревается и возвращается в паровой барабан. Нисходящие трубы большого диаметра используются для циркуляции питательной воды между барабаны. Трубы сливного стакана выходят за пределы печи и соединяются паровые и водяные бочки.


Устройство котельной для генерального грузового судна

Пар производится в паровом барабане и могут быть сняты для использования отсюда. Он известен как «влажный» или насыщенный. пар в этом состоянии, потому что он будет содержать небольшое количество воды, В качестве альтернативы пар может пройти в перегреватель, расположенный внутри котел.Здесь пар дополнительно нагревается и «сушится», т. Е. Все следы вода превращается в пар. Затем этот перегретый пар покидает бойлер для использования в системе. Температура перегретого пара будет быть выше пара в барабане. "Предприниматель", то есть паровой охладитель, может быть установлен в системе для контроля перегретого пара температура.

Горячие газы, образующиеся в печи, используются для нагрева питательной воды. для производства пара, а также для перегрева пара из корпуса котла.Затем газы проходят через экономайзер, через который питательная вода проходит до того, как попадает в котел. Выхлопные газы также могут проходить через воздухонагреватель, который нагревает воздух для горения перед его поступлением в печь. Таким образом, большая часть тепловой энергии от горячего газы используются до того, как они будут выпущены из воронки. В Расположение показано на Рисунке

Существуют два принципиально разных типа бойлера, а именно водяной и пожарная трубка.В водяном шланге питательная вода проходит по трубкам. и горячие газы проходят над ними. В топочном котле горячие газы проходят через трубки, и питательная вода окружает их.

Процедура повышения пара будет варьироваться от котла к котлу. и всегда следует соблюдать инструкции производителя. А ряд аспектов, общих для всех котлов, и общая процедура может быть следующим.

Необходимо проверить всасывание, чтобы обеспечить свободный путь для выхлопных газов. газы через котел; любые заслонки должны работать, а затем правильно расположен.Все форточки, сигнализация, водомер и манометр соединения должны быть открыты. Циркуляционные клапаны пароперегревателя или стоки должны быть открыты, чтобы обеспечить поток пара через перегреватель.

Все остальные сливы и продувочные клапаны котла должны быть проверено, чтобы убедиться, что они закрыты. Затем бойлер следует наполнить немного ниже рабочего уровня горячей деаэрированной водой. В различные вентиляционные отверстия коллектора должны быть закрыты, так как из них вытекает вода.Следует проверить экономайзер, чтобы убедиться, что он заполнен водой и весь воздух вышел.

Проверить работу нагнетательного вентилятора и там, где установлены воздухонагреватели выхлопных газов, их следует обойти. В топливную систему следует проверить на правильность расположения клапанов, и т.д. После этого жидкое топливо должно циркулировать и нагреваться.


Подъем пара

Должен быть запущен нагнетательный вентилятор и воздух должен пройти через печь на несколько минут, чтобы очистить ее от выхлопных газов или масла. пары.Воздух скользит (проверяет) на каждом регистре, кроме загорания » горелку, затем следует закрыть. Теперь можно зажечь работающую горелку и отрегулирован, чтобы обеспечить низкую скорострельность при хорошем горении. Мазут давление и давление принудительной тяги должны быть согласованы, чтобы гарантировать хорошее горение с полным устойчивым пламенем.

Отверстия коллектора перегревателя могут быть закрыты, если пар выходит из их. Когда давление в барабане составляет около 210 кПа (2,1 бар) достигло вентиляционного отверстия барабана, может быть закрыто.Котел необходимо принести медленно до рабочего давления, чтобы обеспечить постепенное расширение и чтобы избежать перегрева элементов пароперегревателя и повреждения любых огнеупорный материал. Производители котлов обычно предоставляют пароподъем. диаграмма в виде графика зависимости давления в барабане от часов после перепрошивки.

Теперь основной и вспомогательный паропроводы следует прогреть через а потом стоки закрылись. Дополнительно должны быть установлены указатели уровня воды. продули и проверили на правильность чтения.Когда пар давление примерно на 300 кПа (3 бара) ниже нормального рабочего значения предохранительные клапаны следует поднимать и отпускать с помощью разгрузочного механизма. После достижения рабочего давления котел можно включить нагрузку и циркуляционные клапаны пароперегревателя закрыты. Все остальные вентиляционные отверстия, стоки и Затем следует закрыть объездные дороги. Уровень воды в бойлере должен быть тщательно проверены и автоматические устройства регулирования воды соблюдается для правильной работы.

Передовой опыт судоходства
Необходимо выполнить следующее:

  • Изоляция паропроводов должна содержаться в хорошем состоянии.
  • Изоляция котла должна быть в хорошем состоянии.
  • Конденсатоотводчики необходимо регулярно проверять на работоспособность.
  • Утечки пара необходимо выявить и устранить.
  • Настройка давления котла для включения / выключения горелки должна быть максимально широкой.

Тест накопления котла Тест котла для проверки возможности срабатывания предохранительных клапанов пар достаточно быстро, чтобы предотвратить повышение давления на 10%.Главный запорный клапан пара закрыто во время теста.

Перечень предохранительных приспособлений в системе котельного мазута

  • Предохранительные клапаны на нагревателях
  • подпружиненные предохранительные клапаны на насосах вернутся в сторона всасывания насоса
  • все трубопроводы изолированы
  • экономия под насосы / подогреватели
  • быстрозакрывающиеся клапаны отстойников
  • ручные быстродействующие запорные клапаны на горелке
  • сигнализация высокой температуры мазута
  • Аварийный сигнал низкой температуры жидкого топлива

Ниже приводится подробное описание судового котла Информационные страницы:

  1. Требования к различным типам котлов - водотрубным котлам и др.
  2. Водотрубный котел используется в системах с высоким давлением, высокой температурой и высокой производительностью пара, например.грамм. обеспечение паром главных двигательных турбин или турбин грузовых насосов. Пожарные котлы используются для вспомогательных целей, чтобы обеспечить меньшее количество пара низкого давления на судах с дизельными двигателями.
  3. Принцип работы и порядок работы пожаротрубных котлов
  4. Жаротрубный котел обычно выбирают для производства пара низкого давления на судах, требующих пара для вспомогательных целей. Операция проста, можно использовать питательную воду среднего качества. Название «котел-цистерна» иногда используется для котлов с дымовыми трубами из-за их большой вместимости.Термины «дымовая труба» и «котел-осел» также используются ....
  5. Порядок работы газовых котлов и экономайзеров.
  6. Применение выхлопных газов главных дизельных двигателей в выработка пара - средство рекуперации тепловой энергии и усовершенствованная установка эффективность. Вспомогательная паровая установка предусмотрена в современных дизельных двигателях. на танкерах обычно используется теплообменник выхлопных газов в основании воронка и один или, возможно, два водотрубных котла .....
  7. Использование креплений для котла
  8. Водотрубные котлы из-за меньшего содержания воды по сравнению с их паропроизводительностью требуют определенных дополнительных креплений: Автоматический регулятор питательной воды.Устанавливаемое в питающую линию перед главным обратным клапаном, это устройство необходимо для обеспечения правильного уровня воды в котле при любых условиях нагрузки. В котлах с высокой скоростью испарения будет использоваться многоэлементная система контроля питательной воды ....
  9. Чистота питательной воды котла
  10. Наиболее «чистая» вода будет содержать растворенные соли, которые выходят из раствора при кипячении. Эти соли прилипают к нагревательным поверхностям в виде накипи и снижают теплопередачу, что может привести к локальному перегреву и выходу из строя трубок.Другие соли остаются в растворе и могут образовывать кислоты, которые разрушают металл котла. Избыток щелочных солей в котле вместе с воздействием рабочих напряжений приведет к состоянию, известному как «щелочное растрескивание». Это фактическое растрескивание металла, которое может привести к серьезному отказу ...
  11. Принцип работы парогенератора и порядок работы
  12. Паро-парогенераторы производят насыщенный пар низкого давления для бытовых и других нужд.Они используются вместе с водотрубными котлами для создания вторичного парового контура, который позволяет избежать любого возможного загрязнения питательной воды первого контура. Расположение может быть горизонтальным или вертикальным с змеевиками внутри корпуса, которые нагревают питательную воду ...
  13. Как контролировать горение в судовом котле
  14. Обязательным требованием к системе управления горением является правильное соотношение количества сжигаемого воздуха и топлива. Это обеспечит полное сгорание, минимум лишнего воздуха и приемлемые выхлопные газы.Следовательно, система управления должна измерять расход мазута и воздуха, чтобы правильно регулировать их пропорции .....
  15. Безопасная работа котла - подготовка и повышение пара
  16. Все котлы имеют топка или камера сгорания, где топливо сжигается, чтобы высвободить свою энергию. Воздух подается в топку котла, чтобы топливо сгорело. происходит. Большая площадь поверхности между камерой сгорания и вода позволяет энергии сгорания в виде тепла быть переносится в воду.....
  17. Процесс сжигания мазута - горелки различной конструкции
  18. Судовые котлы в настоящее время сжигают остаточное низкосортное топливо. Это топливо хранится в баках с двойным дном, из которых оно забирается перекачкой. накачать в отстойники. Здесь любая вода в топливе может успокоиться и истощиться.
  19. Устройство котла - процесс горения - подача воздуха
  20. Горение - это сжигание топлива в воздухе с выделением тепловой энергии. Для полного и эффективного сгорания правильное количество топлива и воздух необходимо подать в топку и поджечь.Примерно в 14 раз больше для полного сгорания необходим воздух в качестве топлива ....
  21. Обычный подпружиненный предохранительный клапан и усовершенствованный высокоподъемный предохранительный клапан для судового котла
  22. Предохранительные клапаны устанавливаются попарно, обычно на одном клапанном блоке. Каждый клапан должен иметь возможность выпускать весь пар, который котел может производить без повышение давления более чем на 10% за установленный период .....
  23. Правильный рабочий уровень для судовых котлов - использование указателей уровня воды
  24. Указатель уровня воды обеспечивает видимую индикацию уровня воды в котле в районе правильного рабочего уровня.
  25. Как поддерживать уровень воды в судовом котле?
  26. Современный водотрубный котел высокого давления и высокой температуры удерживает небольшое количество воды и производит большое количество пара. Поэтому необходим очень тщательный контроль уровня воды в барабане. Реакции пара и воды в барабане сложны и требуют системы управления на основе ряда измеряемых элементов ......
  27. Меры предосторожности при работе с судовым котлом
  28. Все органы управления котлом, регуляторы, аварийные сигналы и отключения должны быть проверены регулярно в соответствии с применимой Системой планового технического обслуживания и рекомендациями производителей.Каждое испытание должно быть записано подписью инженера, проводившего испытание ....

Судовое оборудование - Полезные теги

Судовые дизельные двигатели || Паровая установка || Система кондиционирования || Сжатый воздух || Морские батареи || Грузовые рефрижераторы || Центробежный насос || Различные кулеры || Аварийное электроснабжение || Теплообменники выхлопных газов || Система подачи || Насос для откачки питания || Измерение расхода || Четырехтактные двигатели || Форсунка || Топливно-масляная система || Подготовка мазута || Коробки передач || Губернатор || Судовой инсинератор || Фильтры масляные || Двигатель MAN B&W || Судовые конденсаторы || Сепаратор нефтесодержащих вод || Устройства защиты от превышения скорости || Поршень и поршневые кольца || Прогиб коленчатого вала || Судовые насосы || Различные хладагенты || Очистные сооружения || Винты || Электростанции || Пусковая воздушная система || Паровые турбины || Рулевой механизм || Двигатель Sulzer || Зубчатая передача турбины || Турбокомпрессоры || Двухтактные двигатели || Операции UMS || Сухой док и капитальный ремонт || Критическое оборудование || Палубное оборудование и грузовые механизмы || КИПиА || Противопожарная защита || Безопасность в машинном отделении ||


Машинные помещения.com о принципах работы, конструкции и эксплуатации всей техники предметы на корабле, предназначенные в первую очередь для инженеров, работающих на борту, и тех, кто работает на берегу. По любым замечаниям, пожалуйста Свяжитесь с нами

Copyright © 2010-2016 Machinery Spaces.com Все права защищены.
Условия использования
Прочтите нашу политику конфиденциальности || Домашняя страница ||

.

ПРИЧИНЫ ПОВРЕЖДЕНИЯ КОТЛА

Navigation
  • ДОБРО ПОЖАЛОВАТЬ НА ВЕБ-СТРАНИЦЫ METROPOLITAN ENVIRONMENTAL
  • Sitemap_Page_Title
  • Последовательное окисление-биоремедиация для обработки хлорированных и нефтехимических выбросов
Последние действия на сайте
  • РАССЛЕДОВАНИЕ ПОВРЕЖДЕНИЙ: НАБОР ДЕРЕВЬЕВ

    под редакцией Марины Смит

  • КОНТРОЛЬНЫЙ СПИСОК КАК ИЗБЕЖАТЬ ПРЕТЕНЗИЙ НА СТРОИТЕЛЬСТВО И ОТВЕТСТВЕННОСТИ НА СТРАХОВАНИЕ

    под редакцией Марины Смит СТРАНИЦЫ

    под редакцией Марины Смит

  • Последовательное окисление-биоремедиация для обработки хлорированных и нефтехимических выбросов

    под редакцией Марины Смит

  • ДОБРО ПОЖАЛОВАТЬ В METROPOLITAN CONSULTING ENGINEERING, FORENSICS И ОКРУЖАЮЩИЕ УСЛУГИ Марина

    9 удалено

    9 Смит

    9 Просмотреть все

Navigation
  • ДОБРО ПОЖАЛОВАТЬ НА ВЕБ-СТРАНИЦЫ METROPOLITAN CONSULTING ENGINEERING, FORENSIC AND ENVIRONMENT SERVICES
.

ПРИЧИНЫ ПОВРЕЖДЕНИЙ КОТЛА (ЧАСТЬ-2)

В статье описана очистка воды. Мы обсудим несколько терминов, включая pH, растворенный кислород, проводимость и хлориды. Мы рассмотрим принципы ионного обмена. И в заключительном разделе мы рассмотрим способы и проблемы очистки питательной и котловой воды, а также продувку.

ВВЕДЕНИЕ

Невозможно переоценить важность хорошего химического состава воды. Ваш завод представляет собой значительные вложения со стороны вашей материнской компании.Поддержание его в хорошем рабочем состоянии - это не только вопрос технического обслуживания клапана, электрооборудования и насоса, но и поддержание контроля химического состава в соответствии с применимыми спецификациями. Контроль химического состава установки продлит срок ее службы, повысит надежность и снизит затраты на техническое обслуживание.

ОЧИСТКА ВОДЫ

Водоподготовка необходима для удаления примесей, содержащихся в воде, которые встречаются в природе. Контроль или устранение этих примесей необходимо для борьбы с коррозией, образованием накипи и загрязнением поверхностей теплопередачи по всему объекту и вспомогательным системам.

Ниже приведены три причины использования очень чистой воды на территории завода:

  • Для минимизации коррозии, которая усиливается примесями
  • Для снижения затрат на обслуживание в результате коррозии
  • Для минимизации загрязнения поверхностей теплопередачи

Продукты коррозии и другие примеси могут откладываться на поверхностях сердечника и других областях теплопередачи, что приводит к снижению способности теплопередачи из-за загрязнения поверхностей или блокирования критических каналов потока.Области с высокой концентрацией этих примесей и продуктов коррозии могут также привести к экстремальным условиям различных процессов коррозии, что приведет к выходу из строя компонентов или систем.

Есть несколько процессов, используемых для очистки воды в системах и воды, используемой в качестве подпитки. Деаэрация используется для удаления растворенных газов, фильтрация эффективна для удаления нерастворимых твердых примесей, а ионный обмен удаляет нежелательные ионы и заменяет их приемлемыми ионами.

ОСНОВНАЯ ТЕРМИНОЛОГИЯ ХИМИИ

В этом разделе представлены некоторые основные химические термины и причины, по которым каждый из них должен присутствовать на предприятии.

pH

Причиной контроля pH воды паровой установки является минимизация и контроль коррозии. Присутствие избытка ионов H в растворе приводит к кислой среде. Кислые условия во многих отношениях пагубно сказываются на материалах конструкции.

Кислая среда в воде паровой установки приводит к следующим процессам, потенциально опасным для системы. Во-первых, низкий pH способствует быстрой коррозии за счет ухудшения или «удаления» защитной коррозионной пленки.Во-вторых, продукты коррозии, такие как оксид железа (Fe2O3), который преобладает в коррозионной пленке, хорошо растворяются в кислотном растворе, поэтому по мере увеличения скорости коррозии pH снижается. Таким образом, для предприятий, не использующих алюминиевые компоненты, нейтральный или очень щелочной pH менее агрессивен.

pH обычно поддерживается на уровне от 8 до 9,5, что означает, что предприятие работает с системами подачи и конденсата в «основных условиях», а не в «кислых условиях». Котел работает при гораздо более высоком pH, обычно около 10.5.

Кислые значения pH вызовут коррозию металла котла с последующим растворением и коррозией металла. Коррозия носит общий характер по всей поверхности с некоторым локальным поражением. Очевидной мерой контроля для предотвращения такой коррозии является нейтрализация кислотных свойств с помощью щелочи. При обработке котловой воды для этой цели обычно используются кальцинированная сода и каустическая сода.

Как указывалось ранее, за исключением особых случаев коррозионного воздействия, связанного с работой котла высокого давления, опыт показал, что желательно поддерживать pH котловой воды приблизительно 10.5. Это значение pH достаточно высокое, чтобы избежать кислотного воздействия на металл котла, а также обеспечивает минимальную щелочность (щелочная или некислая среда в котловой воде для осаждения солей, образующих накипь, при применяемой внутренней обработке).

Контроль коррозии в конденсатной системе может осуществляться путем выбора либо нейтрализующего амина, такого как морфолин и аммиак, либо пленочных аминов. Окончательный выбор можно и нужно делать с помощью консультанта по водным ресурсам.

КИСЛОРОД РАСТВОРЕННЫЙ

Контроль содержания растворенного кислорода на вашем предприятии имеет первостепенное значение из-за его вклада в усиление коррозии. Основные реакции, вызывающие озабоченность в отношении высоких концентраций растворенного кислорода, следующие:

Реакция 1: 3Fe + 2O2 = Fe3O4 Реакция 2: 4Fe + 3O2 = 2Fe2O3 Эти реакции зависят как от концентрации кислорода, так и от температуры.

Реакция 1 преобладает при высоких температурах (> 400 ° F) в присутствии более низких концентраций кислорода. Эта коррозионная пленка, закись железа, также известная как магнетит, представляет собой черную, как правило, плотно прилегающую пленку, которая обеспечивает защитную функцию поверхностей внутри объекта.

Реакция 2 протекает при температуре ниже 400 ° F в присутствии более высоких концентраций кислорода. Оксид железа (FeO) более известен как ржавчина и обычно имеет красноватый цвет. Этот продукт коррозии неплотно прилипает к поверхностям и поэтому легко удаляется и транспортируется по системе для последующего осаждения и возможного облучения.

В любой из реакций скорость коррозии увеличивается за счет увеличения концентрации растворенного кислорода и может еще больше усугубляться присутствием других веществ, которые могут присутствовать в системе. Помимо прямого вклада в коррозию, кислород вступает в реакцию с азотом, понижая pH воды, что также приводит к увеличению скорости коррозии. Кислород и азот реагируют с образованием азотной кислоты. Во всех представленных реакциях видно, что концентрация кислорода способствует коррозии.Из этого следует, что для минимизации коррозии необходимо поддерживать как можно более низкую концентрацию кислорода. Концентрацию можно контролировать на постоянной основе с использованием встроенной системы анализа или периодически, отбирая объем образца и анализируя этот образец. Контроль уровня кислорода выполняется не только для того, чтобы гарантировать отсутствие кислорода для коррозии, но и для определения попадания воздуха в систему.

Свободный кислород (растворенный) может разъедать питающие трубопроводы, экономайзеры, паровые барабаны и сливные трубы.Коррозия может быть общей, но более очевидной является точечная коррозия внутренних поверхностей. Неработающие котлы, не хранящиеся должным образом, будут подвергаться коррозии до тех пор, пока не будет использован кислород или пока котел не будет возвращен в эксплуатацию. В любом случае срок эксплуатации котла сократится.

Два метода контроля кислорода:

  • Деаэрация
  • Химическая очистка

Содержание кислорода на входе экономайзера или нагревателя питательной воды должно быть менее 7,0 частей на миллиард по массе.Этот уровень кислорода обычно достигается в правильно работающем деаэраторе, если все распылители, поддоны и форсунки находятся на своих местах и ​​поддерживается подача пара. В дополнение к деаэрации воды до этого уровня кислорода, дополнительный контроль уровня кислорода достигается за счет использования поглотителей кислорода, таких как сульфит или гидразин. Сульфит натрия или гидразин можно использовать при всех давлениях до 1000 фунтов на квадратный дюйм. Оба химиката лучше всего использовать после деаэратора. Помимо гидразина и сульфита натрия доступны сложные органические поглотители кислорода.Эти поглотители могут разлагаться при более высоких рабочих давлениях котла, привнося в воду двуокись углерода или другие органические соединения с короткой цепью. В системах с водой высокой чистоты эти соединения будут влиять на pH и проводимость.

ПРОВОДИМОСТЬ

Электропроводность производственной воды измеряется для определения растворенных ионных веществ в теплоносителе. Измерения проводимости предоставляют количественную, а не качественную информацию, потому что можно определить общую проводимость присутствующих ионов, но не конкретные типы присутствующих ионов.Поскольку многие ионы, такие как железо (Fe), хром (Cr), медь (Cu) и алюминий (Al), склонны к образованию оксидов и отложению накипи на поверхностях теплопередачи, проводимость паровой установки обычно регулируется минимально возможный уровень, соответствующий pH. Контролируя уровни проводимости в системах, оператор может перекрестно проверять химический состав этих систем, тем самым достигая более высокого уровня достоверности измеряемых параметров.

Независимо от рабочих пределов, установленных для данной установки, рабочие отношения могут быть установлены между уровнями pH и проводимостью хладагента.Чрезмерно высокие уровни проводимости указывают на присутствие нежелательных ионов. Это условие требует дальнейшего исследования для определения источника примеси, потому что, помимо других проблем химии, оно способствует общей коррозии за счет увеличения скорости реакции электрохимических ячеек. Для определения причины необходимо проверить чистоту подпиточной воды и любых добавленных средств контроля pH. Также следует проверить pH из-за взаимосвязи этих параметров.Также следует проверить другие химические параметры, такие как Cl и F. После того, как причина высокой проводимости была определена, необходимо предпринять соответствующие шаги, чтобы вернуть проводимость к ее нормальному значению. Одним из часто используемых методов является процедура подачи и удаления воды, при которой вода добавляется и сливается из помещения одновременно. Если используется этот метод, необходимо обеспечить проверку чистоты подпиточной воды, чтобы не допустить усугубления проблемы. Низкая проводимость также является индикатором потенциальной проблемы, поскольку в основных системах высокой чистоты единственной возможной причиной низкой проводимости является низкий pH.Например, в системе, использующей контроль гидроксида аммония с высоким pH, попадание воздуха в помещение может привести к образованию азотной кислоты (HNO) с понижением pH.

ХЛОРИД

Другой параметр, который тщательно контролируется и контролируется на большинстве предприятий, - это хлориды (Cl). Причина поддержания концентрации хлорид-иона на минимальном практически достижимом уровне заключается в том, что хлорид-ион влияет на несколько форм коррозии, и наиболее опасным видом является коррозия под действием хлорида.При подозрении или обнаружении высоких уровней Cl необходимо незамедлительно принять меры для устранения источника и удаления Cl из системы из-за возможных последствий. Если в системе присутствует Cl, один из способов его удаления - запустить операцию подачи и отвода после определения того, что источники подпиточной воды не являются источником загрязнения. Из-за большого объема воды, обычно содержащейся в системе, очистка этим методом требует значительного количества чистой воды и значительного количества времени.Дополнительная проблема, связанная с операциями подачи и отвода, заключается в изменении (обычно снижении) pH.

Это снижение pH может еще больше усугубить возникновение хлоридной коррозии под напряжением. В условиях, когда требуется использование системы подачи и отвода для исправления химических аномалий любого типа, повышенное внимание ко всем параметрам становится все более важным.

ПРИНЦИПЫ ИОННОГО ОБМЕНА

Ионный обмен - это процесс, широко используемый на генерирующих станциях для контроля чистоты и pH воды путем удаления нежелательных ионов и их замены приемлемыми.В частности, это обмен ионами между твердым веществом (называемым смолой) и водным раствором. В зависимости от идентичности ионов, которые смола выделяет в воду, процесс может привести к очистке воды или к контролю концентрации конкретного иона в растворе.

Ионный обмен - это обратимый обмен ионами между жидкостью и твердым телом. Этот процесс обычно используется для удаления нежелательных ионов из жидкости и замены приемлемых ионов из твердого вещества (смолы).Устройства, в которых обычно происходит ионный обмен, называются деминерализаторами. Это название происходит от термина деминерализация, который означает процесс, при котором примеси, присутствующие в поступающей жидкости (воде), удаляются путем обмена примесных ионов с ионами H и OH, что приводит к образованию чистой воды. H и OH присутствуют на участках шариков смолы, содержащихся в резервуаре или колонке деминерализатора.

Существует два основных типа ионообменных смол: те, которые обменивают положительные ионы, называемые катионными смолами, и те, которые обмениваются отрицательными ионами, называемые анионными смолами.

  • Катион - это ион с положительным зарядом. Общие катионы включают Ca, Mg, Fe и H. Катионная смола - это смола, которая обменивает положительные ионы.
  • Анион - это ион с отрицательным зарядом. Общие анионы включают Cl, SO и OH. Анионная смола - это смола, которая обменивает отрицательные ионы.

По химическому составу оба типа схожи и принадлежат к группе соединений, называемых полимерами, которые представляют собой чрезвычайно большие молекулы, образованные путем объединения многих молекул одного или двух соединений в повторяющуюся структуру, которая дает длинные цепи.Деминерализатор со смешанным слоем - это сосуд, обычно объемом в несколько кубических футов, который содержит смолу. Физически ионообменные смолы имеют форму очень маленьких шариков, называемых шариками смолы, со средним диаметром около 0,005 миллиметра. Влажная смола имеет вид влажного прозрачного янтарного песка и не растворяется в воде, кислотах и ​​щелочах. Удерживающие элементы или другие подходящие устройства в верхней и нижней части имеют отверстия меньшего диаметра, чем диаметр шариков смолы. Сама смола представляет собой однородную смесь катионных и анионных смол.Соотношение обычно составляет две части катионной смолы к трем частям анионной смолы. В некоторых случаях могут образовываться химические связи между отдельными цепными молекулами в различных точках цепи. Такие полимеры называются сшитыми. Этот тип полимера составляет основную структуру ионообменных смол. В частности, сшитый полистирол является полимером, обычно используемым в ионообменных смолах. Однако для придания ему ионообменной способности требуется химическая обработка полистирола, и эта обработка варьируется в зависимости от того, должен ли конечный продукт быть анионной или катионной смолой.

Ионы (H и Cl) заменяются другими ионами. То есть H обменивается с другими катионами в растворе, а Cl обменивается с другими анионами. В своей окончательной форме ионообменная смола содержит огромное, но конечное число участков, занятых способным к обмену ионом. Вся смола, за исключением обменного иона, инертна в процессе обмена. Таким образом, для ионообменных смол принято использовать такие обозначения, как R-Cl или H-R. R указывает на инертную полимерную основную структуру и часть замещенного радикала, не участвующую в реакциях обмена.Термин R неточен, потому что он используется для обозначения инертной части как катионных, так и анионных смол, которые немного различаются. Кроме того, структура, представленная R, содержит много сайтов обмена, хотя только один показан обозначением, например R-Cl. Несмотря на эти недостатки, термин R используется для простоты.

Конкретная смола может быть получена в различных формах в соответствии с идентичностью присоединенного обменного иона. Обычно его называют в соответствии с ионом, присутствующим на активных центрах.Например, смола, представленная R-Cl, называется хлоридной формой анионной смолы или просто хлоридной смолой. Другими распространенными формами являются форма аммония (NH-R), форма гидроксила 4 (R-OH), форма лития (Li-R) и водородная форма (H-R).

Механика процесса ионного обмена несколько сложна, но основные особенности могут быть поняты на основе концепций равновесия и признания того факта, что сила ионной связи между смолой и ионом зависит от конкретного иона.То есть для конкретной смолы разные ионы испытывают различное притяжение к смоле. Термин сродство часто используется для описания притяжения между смолой и данным ионом. Это сродство может быть описано количественно путем экспериментального определения параметра, называемого коэффициентом относительного сродства.

Обменная емкость - это количество примесей, которые данное количество смолы способно удалить.

Термин, обычно применяемый к эффективности ионообменника, - это коэффициент дезактивации (DF), который определяется как «отношение концентрации (или активности) жидкости на входе по сравнению с концентрацией (или активностью) на выходе», которое выражает эффективность процесса ионного обмена.

ПИТАТЕЛЬНАЯ ВОДА КОТЛА И ВОДА КОТЛА

Очистка питательной воды

Оборудование предварительного котла (нагреватель питательной воды, насосы, линии и т. Д.) Изготовлено из различных материалов, часто включая медные сплавы, углеродистую сталь, нержавеющую сталь и фосфорную бронзу. Уменьшение или предотвращение коррозии зависит от оптимального уровня pH, который обычно составляет от 8,0 до 9,5.

Как правило, питательная вода котла фильтруется и деионизируется перед подачей в паровой цикл в качестве подпитки.Подпиточная вода необходима для компенсации потерь, возникающих из-за утечек сальника клапана, утечек сальника турбины, утечки сальника питающего насоса котла, продувки или других вентиляционных отверстий в паровом цикле. Эти потери необходимо со временем восполнить.

Конденсат

Если в питательной воде присутствуют магнитные оксиды, их можно удалить фильтрованием через слой смолы или электромагнитными фильтрами. Магнитные оксиды обычно представляют собой соединения железа, такие как оксид железа или силикаты железа. Отложения оксида железа обычно обнаруживаются в котлах, работающих с очень чистой питательной водой.

Обычно источником этих отложений является коррозия вне котла. Коррозия железа или стали может привести к растворению железа в конденсате или питательной воде с последующим его осаждением в условиях более высокой температуры и щелочности котловой воды. Обычные причины такого коррозионного воздействия - растворенный кислород и углекислый газ. Для предотвращения образования отложений оксида железа в котлах необходимо исключить коррозионное воздействие этих газов. Источник растворенного кислорода следует определять с помощью механической и / или химической деаэрации.

В то время как внутренние корректирующие меры, такие как использование агентов кондиционирования органического ила, могут применяться для минимизации отложений оксида железа, основное решение проблемы заключается в коррекции коррозионных условий, которые привели к растворению этих металлов в конденсате или питательной воде. В некоторых случаях источником оксидов железа и коррозии силиката железа в котле не является внешняя по отношению к котлу коррозия. Причиной этой проблемы может быть коррозионное воздействие на металл котла высоких концентраций щелочи или растворенного кислорода.

Нефть

Нефть обычно не содержится в питательной воде котла. Масло может попадать в питательную воду из-за утечек в системе смазки насоса или паровой турбины. Масло также может вводиться в оборудование парового цикла во время технического обслуживания. Масло имеет тенденцию плавать на воде. Следовательно, продувкой удаляется лишь небольшое количество масла, содержащегося в воде в барабане котла. Получить репрезентативную пробу котловой воды для определения содержания масла практически невозможно. Образцы, используемые для определения содержания масла, могут быть взяты из конденсата или питательной воды котла.Определение масла редко можно использовать в качестве контрольного теста, так как не было разработано точного экспресс-метода определения. Некоторые из наиболее серьезных проблем при работе котла, такие как коробление труб, разрыв, локальный перегрев, пенообразование, заливка и образование накипи, могут быть связаны с загрязнением питательной воды котла маслом. Перегрев поверхностей нагрева котла маслом происходит из-за того, что масло образует на поверхности тонкую пленку. Пленка действует как изолятор, замедляющий процесс теплопередачи.Это предотвращение быстрой передачи тепла приводит к увеличению температуры металла трубы.

Компаундированные масла могут вызвать вспенивание котловой воды. Неочищенный пар, образующийся из такой котловой воды, может загрязнять трубы пароперегревателя, лопатки турбины, засорять трубопроводы и ловушки; он также может вызвать загрязнение другого теплопередающего оборудования.

Содержание масла в котловой воде должно быть минимальным. Никакой метод внутреннего кондиционирования не может успешно справиться с этой проблемой, и масло следует удалить снаружи, прежде чем оно попадет в котел.Доступны различные типы оборудования для удаления масла, в том числе механическими и химическими методами.

Механические методы могут применяться к пару и конденсату, тогда как химические методы применяются только к конденсату.

Кремнезем

Кремнезем может присутствовать в воде в двух различных формах. В воде диоксид кремния выражается в процентах диоксида кремния (SiO2). Диоксид кремния трудно удалить из воды, и он приводит к образованию накипи на поверхностях нагрева или компонентах паровой турбины.

Твердые вещества

Растворенные твердые частицы находятся в истинном растворе и не могут быть удалены фильтрацией. Взвешенные твердые частицы не находятся в истинном растворе и могут быть удалены фильтрацией.

Общее количество твердых веществ представляет собой сумму взвешенных и растворенных твердых веществ. Твердые частицы в котловой воде могут быть магнитными или немагнитными.

Растворенные твердые вещества, присутствующие в котловой воде, происходят из-за растворяющего действия воды при контакте с минералами земли или компонентами котла.Взвешенные твердые частицы представляют собой мелкие частицы нерастворимого вещества, механически вносимые турбулентным действием воды на твердые части или части котла.

Взвешенные твердые частицы недопустимы в котловой воде. Эти твердые вещества могут иметь коррозионную природу или образовывать накипь на поверхностях нагрева котла. По этим причинам необходимо удалять взвешенные твердые частицы из котловой воды.

Растворенные твердые вещества обычно представляют собой сульфаты, бикарбонаты и хлориды кальция, магния и натрия. Каждый из этих ионов может оказывать определенное влияние на питательную воду котла.Однако аддитивный эффект различных компонентов котловой воды может вызывать тенденцию к уносу.

Кальций и Mgnesium

Соли кальция и магния являются наиболее распространенным источником накипи в котлах. Внутренняя химическая обработка используется для предотвращения образования отложений и накипи из-за остаточных концентраций жесткости, остающихся в питательной воде, а также для поддержания чистоты поверхностей нагрева котла.

Наиболее распространенным источником накипи является разложение бикарбоната кальция с образованием карбоната кальция под воздействием тепла.Осаждение карбоната кальция с образованием котельной накипи легко происходит там, где питательная вода для котла содержит любое заметное количество бикарбоната кальция.

Действие, проиллюстрированное выше, также может быть причиной образования отложений и отложений в питающей линии и экономайзере на поверхностях нагревателя питательной воды.

Твердость

Жесткость воды складывается из содержания кальция и магния. Твердость также обозначается как кальциевая и магниевая жесткость.Чтобы разделить жесткость таким образом, необходимо определить кальциевую, а также общую жесткость. Предполагается, что разница заключается в твердости магния. Жесткость воды нежелательна из-за разрушающих свойств мыла и образования накипи. При кондиционировании питательной воды котла жесткость воды может вызвать образование накипи на испарительных поверхностях, а также чрезмерное образование осадка или «грязи», если не обработать ее должным образом. Жесткость также может вызвать образование накипи и отложений в нагревателях питательной воды, питающих трубопроводах и экономайзерах.

Масштаб

Образование отложений накипи и шлама на поверхностях нагрева котлов - наиболее серьезная проблема, с которой приходится сталкиваться при производстве пара. Цель большинства процессов внешней очистки - удалить из питательной воды котла те вещества, которые будут способствовать образованию накипи или отложений в котле.

Основная причина образования накипи - снижение уровня растворимости при повышении температуры. Следовательно, чем выше рабочая температура котла, тем более нерастворимыми становятся корковые соли.Ни один метод внешней химической обработки не работает при температуре котловой воды. Следовательно, когда температура питательной воды повышается до рабочей температуры и концентраций котловой воды, растворимость солей, образующих накипь, превышается, и они кристаллизуются из раствора в виде накипи на поверхностях нагрева котла. Накипь в котле создает проблемы при эксплуатации котла, поскольку все образующиеся накипи обладают низкой теплопроводностью. Таким образом, наличие накипи эквивалентно распространению тонкой пленки изоляции на пути передачи тепла от высокотемпературных газов к котловой воде.Наличие теплоизоляционного материала замедлит теплопередачу и вызовет снижение эффективности котла. Температура дымового газа может повыситься, так как котел потребляет меньше тепла.

Внутренняя обработка котла

После первичной обработки воды, которая становится питательной, котловая вода требует внутренней очистки. Существует пять общепринятых методов внутренней очистки котлов барабанного типа с естественной циркуляцией. Вот эти методы:

  1. Обычный фосфат
  2. Координированный фосфат
  3. Конгруэнтный фосфат
  4. Chelant
  5. Нелетучие препараты

Гидроксид фосфата

Фосфатно-гидроксидная обработка котловой воды предотвращает нагар или образование накипи на поверхностях теплопередачи котла.Действие этого метода происходит потому, что сохраняется избыточная щелочность гидроксида. В процессе внутренней обработки котловой воды фосфатом используется фосфат натрия для преобразования жесткости котловой воды в практически нерастворимый фосфат кальция. Тринатрийфосфат, динатрий гидрофосфат и метафосфат натрия - химические соединения, обычно используемые для этого метода.

Твердые частицы фосфата кальция легко удаляются путем непрерывной продувки из барабана или нижней продувки (так называемой периодической продувки).Этот метод характеризуется высоким содержанием взвешенных твердых частиц в непрерывной продувке из барабана. В этом методе обработки фосфаты (PO4) пассивируют внутренние поверхности нагрева трубки.

Поверхности нагрева, работающие под высоким давлением, не допускают преднамеренного образования твердых частиц. Чтобы гарантировать, что содержание твердых частиц не будет превышено, максимальное рабочее давление для этого метода обработки составляет 1500 фунтов на квадратный дюйм.

Координированный фосфат

Скоординированная фосфатная обработка является продолжением фосфатно-гидроксидной обработки и обеспечивает лучший баланс между кислотными и щелочными компонентами.В этом методе действие достигается за счет отсутствия избытка «древесного» гидроксида. Контрольное отношение Na / PO4 для этой обработки составляет или немного ниже 3. Этот метод обработки сводит к минимуму возможность щелочной коррозии и обеспечивает легкое удаление образовавшихся отложений, что приводит к более низкому содержанию твердых частиц и высокой чистоте пара. Кроме того, образующиеся кислоты нейтрализуются, а пассивация поверхности достигается за счет фосфата (PO4) в воде.

Конгруэнтный фосфат

Внутренняя обработка воды конгруэнтным фосфатом основана на поддержании отношения Na / PO4 на уровне 2.3 к 2.6. Этот метод основан на группе кривых и направлен на защиту труб поверхности нагрева котла от каустической строжки, которая может произойти выше диапазона регулирования 2,6, или отказов трубок кислого фосфата, которые могут возникать ниже диапазона регулирования 2,3.

Хелант

В хелатирующей обработке используется комплексное соединение металла для растворения жесткости и удаления из котловой воды путем непрерывной продувки. Chelant не используется при давлении выше 1500 фунтов на квадратный дюйм, и некоторые источники рекомендуют ограничить его использование до 1000 фунтов на квадратный дюйм.Контроль pH питательной и котловой воды важен для защиты железа от хелатирующего воздействия. Один (1) избыток хелатирующего агента в котловой воде обычно является удовлетворительным.

Нелетучие препараты

При очистке легколетучих веществ используются только летучие химические вещества для регулирования pH обратного конденсата, питательной и котловой воды. Обычно используемые добавки - гидроксид аммония, циклогексиламин и морфолин. Поглотителем растворенного кислорода, обычно используемым при обработке ПВТ, является гидразин.Более высокие концентрации этой добавки обычно используются во время операций запуска и останова из-за менее эффективной деаэрации в эти периоды.

ПРОБЛЕМЫ ОЧИСТКИ ВОДЫ

Убежище

Фосфатирование используется в большинстве барабанных котлов для контроля pH и защиты от жесткости. Однако в переходной ситуации это трудно контролировать. Изменения, вызванные укрытием, и колебания объема воды влияют на концентрацию фосфатов. Не во всех котлах есть фосфатное укрытие.Произойдет это или нет, будет зависеть от взаимосвязи между концентрациями фосфатов, температурой металлов и доступностью участков концентрирования и отложений. Сведение к минимуму отложений в парогенерирующих трубах котла снижает укрытие фосфатов.

Избыточное укрытие обычно устраняется химической очисткой с последующей обработкой очищенных поверхностей фосфатом до тех пор, пока стабильная пленка магнетита не образуется на поверхностях трубок. Несмотря на то, что в некоторых случаях щелочную обработку трудно контролировать, ее эффективность в борьбе с загрязнителями не снижается и может эффективно использоваться в чрезвычайных ситуациях.

Чистота пара

Пар, выходящий из котла, может быть с каплями котловой воды (механический вынос) или испарением солей котловой воды. Сумма механических и парообразных переходов составляет общий переходящий остаток. Перенос - это термин, применяемый к непрерывному уносу относительно небольшого количества твердых частиц котловой воды с паром.

Поскольку котельная вода переносится с паром, в пароперегревателях, обратных клапанах, трубопроводах или паровых турбинах образуются отложения.Эти отложения действуют как изоляторы на поверхностях нагрева пароперегревателя, позволяя температурам металла труб повышаться. Это может привести к серьезной потере эффективности турбины или отложению корки на регулирующих клапанах, что приведет к превышению скорости и повреждению машины.

Наиболее частые причины уноса, связанные с неправильной работой, связаны с вспениванием или заливкой в ​​котле и слишком высоким уровнем воды в барабане. Во всех этих случаях в пароотделитель попадает значительное количество воды, что снижает его эффективность.Грунтование и пенообразование всегда нежелательны и могут быть опасными, и их причины всегда должны быть исследованы и приняты меры. Если унос происходит из-за неполного отделения пара или пароохладителя с использованием загрязненной воды, перегреватель, безусловно, будет загрязнен или поврежден. Увеличение падения давления в пароперегревателе или потеря трубок пароперегревателя - верные предупреждающие сигналы о возможном переходе.

Вспенивание и грунтование

Пенообразование - это образование большого количества пены или пузырьков в котле из-за того, что пузырьки пара не слипаются и не разрушаются.Образовавшаяся пена может полностью заполнять паровое пространство в барабане котла или иметь относительно небольшую глубину. В любом случае это состояние пенообразования вызывает заметный унос котловой воды или влажность пара. Повышенное содержание влаги в паре увеличивает количество твердых частиц в перегревателях. Чрезмерное количество растворенных и взвешенных твердых частиц в котловой воде вызывает пенообразование. Внезапные или резкие скачки нагрузки также могут вызвать вспенивание.

Заполнение характеризуется большим количеством воды, выходящей из котла вместе с паром, обычно прерывистыми пробками.Грунтование более агрессивное, чем пенообразование. Это действие похоже на "толчки", возникающие при кипячении воды в открытом стакане. Это может происходить одновременно с вспениванием. Высокий уровень воды в паровых барабанах способствует заправке.

Продувка

Контуры испарителя HRSG

предназначены для работы с непрерывной и периодической продувкой. HRSG спроектирован для нормальной работы с непрерывной продувкой 1% и без периодической продувки. Скорость непрерывной продувки можно регулировать в соответствии с требованиями к чистоте пара в зависимости от качества воды в барабане.

Непрерывная продувка

Во время нормальной работы питательная вода постоянно поступает в барабан, а пар выходит. Примеси в питательной воде и те, что отделены от пара, останутся в воде корпуса котла. Непрерывное удаление примесей с помощью продувочной линии называется непрерывной продувкой (CBD). Линия CBD подводится либо к сливному резервуару котла, либо к расширительному резервуару продувки. Такой разводки можно добиться за счет правильной установки клапанов на линиях. Шаровой клапан игольчатого типа используется для настройки расхода CBD.Если примеси или твердые частицы не удаляются с помощью CBD, твердые частицы будут становиться все более и более концентрированными и в конечном итоге откладываться на внутренних поверхностях труб в виде накипи или приводить к уносу в пароперегреватель и паровую турбину. Образование накипи на поверхности трубы снижает теплопередачу и может привести к перегреву и возможному выходу трубы из строя.

Периодическая продувка

Периодическое удаление шлама или отложений через линию нижней продувки из питающего коллектора называется периодической продувкой (IBD).IBD предназначен для удаления любого осадка, образующегося в котловой воде, и поддержания химического состава котловой воды в проектных пределах. В отличие от CBD, IBD управляется вручную в течение коротких промежутков времени (несколько секунд) для удаления взвешенных твердых частиц, которые могли осесть в нижних коллекторах питателя, которые являются самым низким водяным пространством в контуре испарителя HRSG.

Во время холодного пуска и колебаний нагрузки доступна система IBD для удаления избыточного количества питательной воды для контроля уровня в корпусе котла и твердых частиц воды с точки зрения чистоты пара.

Периодическая продувка обычно не требуется после стабилизации агрегата при нормальной рабочей нагрузке, при условии, что система непрерывной продувки может поддерживать уровень твердых частиц воды в барабане. Повышение концентрации твердых веществ может быть связано с нарушениями водоподготовки или изменениями химического состава воды.

.

Топ-10 самых распространенных проблем котлов

Ваш котел не работает в лучшем случае неудобство. К счастью, многие проблемы с котлом являются обычными и могут быть легко устранены профессиональным инженером-теплотехником, а в некоторых случаях даже решены самостоятельно.

Чтобы выявить неисправность как можно проще, современные котлы отображают цифровой код ошибки котла, чтобы вы точно знали, что вызывает неисправность.

Вот 10 самых распространенных проблем котла:

Общие проблемы котла:

  1. Горячая вода, но без отопления
  2. Нет отопления и горячей воды
  3. Котел негерметичен
  4. Котел разводной
  5. Шумный котел (например, стук, свист, бульканье)
  6. Котел низкого давления
  7. Трубка замерзшего конденсата
  8. Радиаторы холодные
  9. Котел отключается
  10. Котел не реагирует на термостат

ВНИМАНИЕ: Вы все еще можете получить расценки на котел во время блокировки COVID-19.Инженеры-теплотехники считаются ключевыми работниками и предоставляют расценки до тех пор, пока ни у кого в вашей семье нет симптомов коронавируса и не соблюдаются правила социального дистанцирования. Многие также могут дать совет и расценки по телефону или по видеосвязи.

1. Горячая вода, но без отопления

Котел должен обеспечивать ваш дом центральным отоплением и горячей водой. Если вы обнаружили, что из кранов идет горячая вода, но нет центрального отопления, значит, проблема.

Если у вас нет центрального отопления, сначала убедитесь, что ваш термостат работает, а затем проверьте, не слишком ли низкое давление в котле.


Термостаты позволяют контролировать температуру центрального отопления, а также время, в которое оно должно включиться. Если отопление не включилось в ожидаемое время, еще раз проверьте настройки.

Давление в котле - это термин, используемый для описания давления горячей воды, проходящей через систему центрального отопления.Если давление в котле упадет слишком низко, центральное отопление не будет работать.

Повышение давления в котле можно сделать, не вызывая теплотехника. Однако, если вы хоть немного не уверены, не стесняйтесь обращаться к профессионалу.

Неисправности термостата и низкое давление в котле - не единственные причины, по которым у вас может быть ГВС, но нет отопления. К сожалению, здесь все становится немного сложнее.

Если с термостатом все в порядке, а давление в котле достаточно высокое, возможно, возникла неисправность, требующая профессионального ремонта.Распространенные причины горячей воды, но не нагрева, включают сломанные диафрагмы и воздушные пробки или неисправность клапанов с электроприводом.

В системах отопления, в которых есть комбинированный котел, проблема может быть в переключающем клапане. Комбинированные котлы обеспечивают отопление и горячую воду по запросу, а переключающий клапан направляет горячую воду либо к радиаторам, либо к выходам горячей воды. В случае, если он застрянет, у вас может остаться горячая вода, но не будет отопления, или наоборот.

Зарегистрированный инженер Gas Safe сможет диагностировать неисправные диафрагмы и воздушные шлюзы, клапаны с электроприводом или переключающие клапаны и выполнить необходимый ремонт или заменить сломанные детали.

2. Нет отопления и горячей воды

Вы можете рассчитывать на свой бойлер, чтобы обеспечить свой дом отоплением и горячей водой. Если вы обнаружите, что ничего не может сделать, вам нужно исправить это как можно быстрее.

Нет единственной проблемы, которая могла бы привести к тому, что ваш котел не сможет обеспечить тепло или горячую воду.

Прежде чем делать выводы о возможных неисправностях, убедитесь, что на котел подано питание.


Если на ваш котел подается питание, мы можем продолжить изучение возможных проблем.Ваш котел должен отображать код ошибки, чтобы помочь вам определить источник проблемы. Однако, чтобы дать вам некоторые идеи, возможные проблемы включают:

  • Топливо не попадает в вашу собственность. Если у вас есть газовый котел, убедитесь, что ваш поставщик газа по-прежнему поставляет топливо. Если у вас масляный котел, убедитесь, что в баке для хранения достаточно топлива.
  • Дважды проверьте настройки термостата и установите желаемую температуру выше текущей температуры в помещении
  • Трубка для конденсата замерзла и ее нужно оттаять (об этом мы поговорим позже)
  • Низкое давление в котле, убедитесь, что давление в котле установлено в соответствии с инструкциями производителя (обычно между 1 и 2 на манометре).
  • Старые котлы будут иметь пилотную лампу, небольшое пламя, которое постоянно горит, прежде чем зажигать большее пламя, когда требуется отопление или горячая вода.Если сигнальная лампа погаснет, котел не сможет заработать.

3. Котел негерметичен

Утечка из вашего котла никогда не является хорошим знаком. Причем причина протечки будет зависеть от того, откуда идет вода.

Прежде чем пытаться определить причину утечки, остановите подачу воды и выключите центральное отопление.


Важно отметить, что вы никогда не должны пытаться устранить утечку котла самостоятельно - всегда вызывайте зарегистрированного инженера Gas Safe.

Самая частая причина протечки котла - сломанный внутренний компонент, например, уплотнение насоса или нагнетательный клапан. Если утечка происходит из клапана давления, возможно, давление в котле слишком высокое. Между тем, утечка из уплотнения насоса является признаком того, что оно, возможно, изношено и нуждается в замене.

В случае, если бойлер протекает вокруг труб или резервуара, это явный признак коррозии. В противном случае это может быть результатом плохой установки.В любом случае мы рекомендуем вызвать инженера, который сможет диагностировать и устранить утечку.

4. Котел разводной

Слышишь странный рокочущий звук, похожий на то, что кипит чайник? Когда известковый налет или шлам накапливаются на теплообменнике вашего котла (змеевик, который передает тепло от топлива воде, которая будет циркулировать по системе отопления), вы можете получить то, что называется кетлингом.

Когда в вашем котле скапливается мусор, он может ограничить поток воды внутри теплообменника.Это может привести к перегреву воды, из-за чего она закипит и закипит, что вызовет звуки, похожие на звуки чайника.


Кеттлинг чаще встречается в районах с жесткой водой, но также может повлиять на котлы в районах с мягкой водой. Это не только заставляет ваш котел работать более интенсивно и, следовательно, дороже в эксплуатации, но также может сократить срок службы системы.

Если в вашем котле происходит кипение, рекомендуется вызвать зарегистрированного инженера по газовой безопасности. Инженер, скорее всего, промоет вашу систему, чтобы удалить накопление этих отложений и убедиться, что система снова работает правильно.

5. Шумный котел (например, стук, свист, бульканье)

Система обогрева может издавать различные шумы, вызываемые по ряду причин, от стука и лязга до свиста и бульканья.

Если вы слышите шум, исходящий от котла или системы отопления, не игнорируйте его, возможно, это неисправность.

Возможная неисправность зависит от типа звука и его источника. Ниже мы перечислили несколько распространенных шумов котла, чтобы помочь вам найти причину.

Свист

Мы уже учли звуки, похожие на звуки чайника, вызванные скоплением шлама на теплообменнике.

Треск

Удар обычно вызывается отсоединением трубопроводов или внутренних компонентов, но также может быть результатом скопления мусора на теплообменнике. Некоторые стучащие звуки потенциально могут быть признаком того, что насос, который перекачивает горячую воду из бойлера вокруг системы центрального отопления, близок к отказу.

лязг

Звук недалеко от стука - это лязг, который снова может быть вызван незакрепленной трубой.Кроме того, это может означать, что вентилятор котла заблокирован.

Жужжание

Жужжание может указывать на то, что электрические компоненты котла неисправны и, вероятно, нуждаются в замене. Если жужжание исходит от термостата, это может означать, что проводник загрязнен и его необходимо заменить

гудение

Котлы, как правило, издают некоторый рабочий шум, напоминающий легкое гудение - для самых тихих моделей обратите внимание на котлы, аккредитованные Quiet Mark - но громкое гудение может быть признаком незакрепленной детали (скорее всего, насоса центрального отопления) .

Бульканье

Слишком много воздуха в трубах может вызвать закупорку, которая препятствует циркуляции воды в системе отопления. Если вы слышите это из-за радиатора, скорее всего, их нужно удалить.

Мы рассмотрели больше шумов котла в статье «Почему у меня центральное отопление так шумно?» чтобы помочь вам найти причину проблемы.



6. Низкое давление котла

Давление в котле - это измерение давления горячей воды, проходящей через систему центрального отопления.Если давление в котле падает слишком низко, центральное отопление не работает.

Ваш котел оснащен манометром, который можно использовать для измерения давления в котле. Если стрелка где-то ниже 1, давление слишком низкое. Обычно давление в котле должно находиться в диапазоне от 1 до 2. Тем не менее, вы должны проконсультироваться с инструкциями производителя, чтобы найти подходящее давление для вашего котла.

Все котлы будут постепенно терять давление в котле с течением времени, но внезапное резкое падение может быть признаком более серьезной проблемы.Так что, если вы заметили падение давления в бойлере, проверьте его на предмет утечек воды и холодных пятен на радиаторах (поскольку они могут нуждаться в удалении воздуха).

Повышение давления в котле - это то, что вы можете сделать сами, но при необходимости обратитесь к инженеру. Посетите наш справочник «Причины низкого давления в котле»? чтобы узнать, как увеличить давление в котле за 8 простых шагов.

7. Трубка замерзшего конденсата

Конденсационные котлы

имеют конденсатопровод, по которому кислая вода, образующаяся в процессе работы котла, отводится от агрегата в канализацию.Многие конденсатопроводы расположены снаружи здания, что, поскольку они содержат жидкость, может привести к их замерзанию.

Оттаять конденсатопровод можно самостоятельно, облив теплой (не кипящей) водой замерзшее место.


Восстановите работу котла, выполнив действия, описанные в разделе «Как разморозить трубу для замерзшего конденсата».

Чтобы предотвратить замерзание трубы для конденсата в будущем, инженер-теплотехник может порекомендовать изоляцию трубы. Утепление означает просто обернуть трубу изоляцией, чтобы сохранить тепло и снизить риск замерзания.

8. Радиаторы холодные

В случае, если некоторые из ваших радиаторов не нагреваются, это может означать, что в системе скопился ил или воздух.


Если нагревается только нижняя часть радиатора, возможно, вам необходимо удалить воздух из радиатора. Это довольно просто и не требует наличия инженера, но если вам неудобно это делать, обратитесь к профессионалу.

Если некоторые радиаторы не нагреваются, возможно, их необходимо отрегулировать.Это также можно сделать без помощи инженера, но только если вы уверены, что делаете это. Этот процесс включает регулировку клапанов на всех радиаторах в вашем доме, чтобы каждый из них получал достаточно горячей воды для эффективной работы. Наше руководство по балансировке радиаторов поможет вам в этом процессе.

Если вы попытаетесь удалить воздух и сбалансировать радиаторы, но вам не повезло, у вас может возникнуть проблема с накоплением осадка, препятствующего свободному течению горячей воды к радиаторам.Профессиональный инженер может удалить эти наросты, химически очистив или промыв систему, это то, что вам не следует пробовать самостоятельно.

9. Котел отключается

Котел мог постоянно отключаться по ряду причин. Некоторые из основных виновников:

  • Котел низкого давления
  • Проблемы с термостатом
  • Отсутствие потока воды из-за закрытого клапана или из-за неправильной циркуляции воды в системе в насосе
  • Слишком много воздуха в системе
  • Накопление ила или другого мусора в системе

Если термостат работает должным образом, а давление в котле соответствует инструкциям производителя, пора вызвать зарегистрированного инженера Gas Safe.

10. Котел не реагирует на термостат

Соединение котла с термостатом, особенно с умным термостатом, - отличный способ повысить эффективность вашего дома. Однако, если ваш котел не реагирует на термостат, это может быть особенно неприятно.

Сначала убедитесь, что температура на термостате выше текущей комнатной температуры.


Если котел по-прежнему не реагирует после включения комнатного термостата, самое время разобраться в проблеме немного дальше:

  • Проверить, полностью ли заряжены и исправны ли батареи
  • Умные термостаты должны быть подключены к Интернету, поэтому убедитесь, что ваш Wi-Fi работает.
  • Просмотрите настройки температуры и ежедневные расписания, которые могут препятствовать включению обогрева.

Сколько стоит ремонт котла?

Стоимость ремонта котла будет зависеть от проблемы и расценок инженера.


Расходы на ремонт котла сильно зависят от проблемы и тарифов, взимаемых установщиком. Вы можете сэкономить, решив некоторые проблемы с котлом самостоятельно. Однако мы должны подчеркнуть, что для решения большинства проблем с котлами требуется опыт зарегистрированного инженера по газовой безопасности. Определенные проблемы котла должны решаться только зарегистрированным инженером Gas Safe.

Проблема котла Сделай сам или инженер-теплотехник? Ориентировочная стоимость
Балансировка радиаторов Сделай сам или инженер-теплотехник Бесплатно, если сделай сам, или 100-200 фунтов стерлингов для инженера-теплотехника
Удаление воздуха из радиаторов Сделай сам или инженер-теплотехник Бесплатно, если сделай сам, или 80 - 200 фунтов стерлингов для инженера-теплотехника
Переключающий клапан сломан Инженер-теплотехник 250–350 фунтов стерлингов
Неисправный теплообменник Инженер-теплотехник 300–500 фунтов +
Неисправный насос Инженер-теплотехник 100–300 фунтов
Отопление, но без горячей воды Инженер-теплотехник 90–150 фунтов
Кеттлинг Инженер-теплотехник £ 400
Шумы от системы отопления Инженер-теплотехник 80–150 фунтов

В зависимости от неисправности и того, как часто ваш котел выходит из строя, замена котла может быть более рентабельной.

Вам нужен ремонт котла или замена котла?

Иногда ремонт котла не имеет финансового смысла. Вместо этого замена котла была бы гораздо более рентабельной.

По мере старения котлы становятся менее надежными и, вероятно, требуют более частого ремонта. Эти счета за ремонт котла начнут накапливаться, и наступит момент, когда замена котла станет вашим лучшим вариантом.

В зависимости от типа устанавливаемого котла затраты на установку нового котла могут составлять от 1000 до 3750 фунтов стерлингов, включая установку.Если учесть, что определенные запасные части могут стоить несколько сотен фунтов, это может быть разумным шагом в отношении долгосрочных инвестиций в замену бойлера. Узнайте больше в разделе «Затраты на замену нового котла».

Вам следует подумать о замене котла, если вашему котлу более 8 лет, он регулярно выходит из строя, инженерам сложно найти запасные части или ваши счета за отопление растут.


Современные котлы намного надежнее старых и даже имеют гарантийный срок.Гарантия означает, что производитель покрывает вас в случае неисправности (если позволяют сроки и условия), что может сэкономить вам деньги. Кроме того, новый бойлер повысит эффективность вашей системы отопления, что поможет снизить ваши счета за отопление.

Как и в большинстве случаев ремонта котлов, замену котла должен выполнять инженер, имеющий регистрацию газовой безопасности. Наша сеть инженеров-теплотехников включает инженеров-теплотехников со всей Великобритании, и мы ежедневно проверяем их учетные данные по газовой безопасности.И нет ничего проще - связаться с инженерами в вашем регионе.

Все, что вам нужно сделать, это заполнить нашу простую онлайн-форму, указав некоторые подробности о проделанной работе. Мы подберем для вас инженеров, квалифицированных для выполнения работ, и вы получите бесплатные предложения от 3 компаний. Сравнивая несколько предложений, вы можете быть уверены, что получаете наиболее конкурентоспособную цену.



.

Газовые котлы | Building America Solution Center

По данным Управления энергетической информации США (EIA), до 11% существующих домохозяйств используют ту или иную форму горячей воды или пара (EIA 2009). Бойлеры производят горячую воду, которую можно использовать для отопления домов несколькими различными способами. Горячая вода может подаваться через петли пластиковых труб в полу для излучающего тепла пола или через металлические радиаторы, установленные вдоль стены, или радиаторы плинтуса, установленные рядом с полом.Горячая вода также может быть направлена ​​от водонагревателя топливного бака к змеевику в воздухообрабатывающем устройстве, оборудованном вентилятором для продувки воздухом через змеевик и через каналы подачи воздуха в дом. Большинство котлов для сжигания работают на природном газе. Мазут, пропан и древесина - другие источники топлива, используемые в местах, где нет свободного газа. Горячая вода для бойлера также может быть нагрета или предварительно нагрета с помощью солнечной системы нагрева воды, геотермального теплового насоса или воздушного теплового насоса.Котел может нагревать воду в баке или это может быть настенная модель без бака (проточного типа). Некоторые котлы обеспечивают тепло для резервуара с горячей питьевой водой в дополнение к подаче горячей воды в комнатные обогреватели; это называется косвенным нагревом воды. Некоторые новые, очень эффективные модели сочетают в себе отопление помещений, водонагревание и вентиляцию с рекуперацией тепла.

Для достижения наилучших рабочих характеристик система отопления должна иметь размеры, соответствующие расчетной отопительной нагрузке дома, как описано ниже. Если дом построен с высоким уровнем теплоизоляции и герметичности, часто можно установить меньшую систему отопления.Когда оборудование слишком велико, оно может «работать в коротком цикле» или многократно включаться и выключаться до того, как будет удовлетворена потребность, что может отрицательно сказаться на использовании энергии, комфорте и долговечности оборудования.

Горючие котлы, печи и водонагреватели классифицируются Международным механическим кодексом (IMC) и Национальным кодексом топливного газа. Понимание описаний этих типов устройств на основе обоих кодексов важно с точки зрения безопасности и эффективности.

Международный механический кодекс классифицирует котлы по типу вентиляции: прямой, механический или атмосферный.В соответствии с определениями главы 2 Международного механического кодекса 2009 и 2012 гг .:

  • Устройство с прямым отводом воздуха - это устройство, которое сконструировано и установлено таким образом, что весь воздух для горения поступает из наружной атмосферы, а все дымовые газы выводятся во внешнюю атмосферу;
  • Система механической тяги - это система вентиляции, предназначенная для удаления дымовых или отходящих газов с помощью механических средств, состоящих из

- участок вытяжной тяги при неположительном статическом давлении; или участок с принудительной тягой под положительным статическим давлением;

  • Система естественной тяги - это система вентиляции, предназначенная для удаления дымовых или выхлопных газов под неположительным статическим давлением вентиляции полностью за счет естественной тяги.

Национальный кодекс топливного газа 2015 года (NFPA 54) разделяет печи на четыре категории в зависимости от давления в дымоходе, температуры дымового газа (относится к конденсации или без конденсации) и материалов выпускных труб, как показано в таблице 1.

Таблица 1 . Национальный кодекс топливного газа (NFPA 54) определяет четыре категории печей для сжигания и водонагревателей в зависимости от типа горения (герметичный или негерметичный), давления в вентиляционной трубе и температуры в вентиляционной трубе.

Котлы с самым низким КПД - это котлы категории I.Котел категории I работает с дымоходом при отрицательном давлении по отношению к зоне топки (CAZ), то есть комнате, в которой расположен котел, и температура дымовой трубы выше 140 ° F, что достаточно для избегать конденсации в вентиляционном отверстии Горелка забирает воздух для горения из CAZ. Камера сгорания также открыта для CAZ; То есть, если вы стоите рядом с котлом, вы можете заглянуть внутрь и увидеть горелку и пламя.

В более старых котлах категории I используется открытый вытяжной колпак, который позволяет разрежающему воздуху попадать в вентиляционную трубу и смешиваться с выхлопными газами (рис. 1).Переключатель тяги в основании дымохода защищает пламя от нисходящих потоков, падающих в дымоход или дымоход. Эти старые котлы не имеют механической тяги, а называются естественной тягой (или атмосферной тягой), потому что они полностью полагаются на высокие температуры дымовых газов (по отношению к наружным температурам) для отвода выхлопных газов вверх и из дымохода. Поскольку большая часть тепла идет вверх по дымоходу, котлы с естественной тягой имеют очень низкие показатели годовой эффективности использования топлива (AFUE), обычно 70% или меньше.

В более новом типе котлов категории I вытяжной колпак заменен на небольшой вентилятор, называемый вытяжным вентилятором, который втягивает воздух через камеру сгорания, хотя котел по-прежнему полагается на температуру дымовых газов для подъема дымовых газов вверх по дымовой трубе. . Вентилятор с принудительной вытяжкой помогает предотвратить обратную вытяжку при запуске и помогает начать вытяжку. Как только вентиляционная труба нагревается до температуры (140 ° F +), создается тяга, и давление внутри вентиляционной трубы (на положительной стороне вентилятора) становится отрицательным по отношению к CAZ.Вытяжной вентилятор избавился от вытяжного шкафа и разбавляющего воздуха, что приводило к потере энергии. Котлы категории I, оснащенные вытяжным вентилятором, обычно имеют более чистое или более полное сгорание, чем их более старые аналоги, и поэтому выделяют меньше загрязняющих веществ в воздух. Усовершенствованные котлы и печи категории I также имеют электронное зажигание, а не стоячую контрольную лампу. Котлы категории I с принудительной тягой могут иметь КПД от 78% до 83%.

ENERGY STAR разрешает использование котлов с естественной вытяжкой в ​​климатических зонах IECC с 1 по 3, а программа DOE Zero Energy Ready Home допускает их использование в климатических зонах 1 и 2, если они имеют AFUE ≥ 80%.Однако маловероятно, что у котлов с вытяжным колпаком КПД превысит 70%, поэтому практически все котлы и печи с вытяжкой ≥80% имеют принудительную тягу, механическую или прямую вентиляцию. При установке котлов и топок с естественной тягой необходимо провести испытание на безопасность горения.

Котел или печь с вытяжным вентилятором считается сконструированной механически. Однако, поскольку это все еще открытое сгорание (т. Е. Он забирает воздух для горения из CAZ) и поскольку он полагается на отрицательное давление в дымоходе для уноса побочных продуктов сгорания, он, как и котел или печь с естественной вентиляцией, может иметь потенциал обратной тяги. .Обратная тяга, когда газы сгорания утекают в CAZ, а не выходят из дымохода, может произойти, если в CAZ снижается давление по отношению к дымоходу. Это может произойти по нескольким причинам - например, одновременная работа нескольких вытяжных вентиляторов, сушилки и камина.

На рисунках 1 и 2 ниже показаны котлы категории I. В котле на Рисунке 1 используется старая технология вытяжного колпака, который втягивает разбавляющий воздух в вентиляционную трубу. В более новом котле на рис. 2 вытяжной колпак заменен на небольшой вытяжной вентилятор, который вытягивает продукты сгорания через камеру сгорания и дымоход, выталкивая побочные продукты сгорания через вентиляционную трубу.

Рисунок 1 . В газовых котлах категории I с естественной тягой естественная тяга нагретого дымохода втягивает воздух для горения через вытяжной колпак в камеру сгорания. (Изображение любезно предоставлено Calcs Plus)

Рисунок 2 . В котле с принудительной тягой категории I используется вытяжной вентилятор, который втягивает воздух через камеру сгорания в дымоход. (Изображение любезно предоставлено Calcs Plus)

Категория II применяется к некоторым коммерческим печам, но не к бытовым приборам.

A Категория III Прибор для сжигания имеет вентиляционную трубу, которая находится под избыточным давлением, и в приборе нет конденсации, то есть его дымовые газы проходят только через один теплообменник, а затем выходят через вентиляционное отверстие при температуре выше 140 ° F. К приборам категории III могут относиться проточные газовые водонагреватели и газовые или мазутные котлы. Более подробное описание котлов на жидком топливе см. В руководстве «Котлы на жидком топливе».

Котлы категории IV - это приборы для сжигания, которые имеют вентиляционную трубу с положительным давлением и дымовыми газами ниже 140 ° F.Вытяжной вентилятор имеет низкую температуру, поскольку приборы категории IV оснащены двумя теплообменниками (или иногда одним очень большим теплообменником). Во втором теплообменнике отводится оставшееся тепло воздуха для горения, а водяной пар (побочный продукт сгорания) охлаждается и конденсируется в жидкую воду. Эта жидкость сливается в канализацию или наружу через отвод конденсата. Конденсат очень кислый (pH ≤ 3), поэтому местные нормы могут потребовать его предварительной обработки перед сбросом в канализацию.(См. Конденсационные котлы.)

Котлы категорий III и IV являются устройствами с принудительной тягой (также называемыми механическими вентилируемыми), что означает, что они оснащены вентилятором для горения, который расположен перед горелкой, чтобы проталкивать воздух через камеру сгорания и из вентиляционного отверстия (Рисунок 5 ). Во время работы горелки вентилятор работает постоянно, поэтому давление в вентиляционной трубе всегда положительное. Побочными продуктами полного сгорания являются CO 2 , H 2 O и N.

Котлы категории IV, как и котлы категории III, выпускают выхлопные газы сгорания непосредственно наружу через герметичную трубу, поэтому их нельзя отводить назад. Приборы категорий III и IV должны быть установлены как приборы с герметичным сгоранием / прямым выпуском воздуха, что означает, что их камера сгорания изолирована от CAZ, и они забирают воздух для горения извне через вторую выпускную трубу или концентрические трубы, по которым воздух для горения направляется непосредственно в камера сгорания снаружи дома.Однако, хотя производители не рекомендуют это, они иногда устанавливаются как устройства с прямым выпуском воздуха (когда выхлопная труба установлена, но труба для входящего воздуха не установлена, поэтому котел забирает воздух для горения из CAZ).

Котлы категории IV могут работать на газе или жидком топливе. Для получения дополнительной информации о масляных котлах обратитесь к руководству по масляным котлам. Подробнее о котлах категории IV см. Конденсационные котлы.

С 1992 года Министерство энергетики США (DOE) в соответствии с Законом об экономии энергии для бытовых приборов требует, чтобы малые газовые котлы имели AFUE не менее 80%.В ноябре 2007 года Министерство энергетики установило пересмотренный минимальный стандарт эффективности 82% для бытовых котлов, который вступит в силу в ноябре 2015 года. Чтобы иметь маркировку ENERGY STAR, котел должен иметь КПД 85% или выше.

ENERGY STAR для домов (Версия 3, Ред. 08) позволяет газовым и масляным печам и котлам иметь AFUE ≥ 80% в климатических зонах 1, 2 и 3. В климатических зонах 4-8 ENERGY STAR требует, чтобы котлы были ≥ 85 % и маркировка ENERGY STAR.

Программа DOE Zero Energy Ready Home допускает использование котлов AFUE ≥ 80% только в климатических зонах 1 и 2.В климатических зонах 3 и 4 (кроме морской климатической зоны 4) котлы должны иметь AFUE ≥ 90%, а в климатических зонах с 5 по 8 (плюс морская климатическая зона 4) котлы должны иметь AFUE ≥ 94%.

Блок управления котлом

В то время как старые котлы либо включены, либо выключены, новые котлы с многоступенчатыми или модулируемыми горелками имеют регулируемую мощность для лучшего соответствия тепловой нагрузке. Это уменьшает количество циклов включения-выключения (и циклические потери) и позволяет котлу работать дольше при более низких скоростях сжигания топлива, что повышает эффективность.Немодулирующие котлы имеют КПД от 85% до 90%. Котлы, которые работают в режиме модуляции, а не только в режиме включения-выключения, могут повысить средний КПД котла до 8%. Модели с более высоким КПД также оснащены электронными контроллерами, которые могут продлить срок службы оборудования, повысить эффективность котла и повысить комфорт за счет регулирования температуры котловой воды, создания реле задержки времени, выполнения автоматической дополнительной продувки, предотвращения работы котла в теплую погоду, управления положение смесительных клапанов и контроль скорости насоса.Эти средства управления могут повысить эффективность котлов без конденсации на 10% и более и снизить потери на холостом ходу до 0,3%. Конденсационные газовые котлы, которые полностью регулируются и имеют расширенные средства управления, могут достигать КПД от 92% до 96%.

Существует множество настроек, которые можно отрегулировать на современном котле для повышения эффективности и комфорта оборудования. Эти настройки могут обеспечить лучшую производительность, чем заводские настройки по умолчанию.

Управление сбросом температуры наружного воздуха, которое приводит выходной сигнал системы в соответствие с фактическими температурными условиями наружного воздуха, повысит комфорт владельцев как конденсационного, так и неконденсирующего оборудования, предотвращая резкие скачки температуры в помещении, когда температура наружного воздуха выше проектных.Если вы устанавливаете внешний сброс, рекомендуем домовладельцам не использовать стратегию понижения температуры в ночное время, если не установлены специальные элементы управления, которые могут блокировать управление сбросом. Расположите наружный датчик в месте, где он не будет подвергаться воздействию источников тепла, таких как прямой солнечный свет или вытяжное отверстие сушилки.

При установке регулятора сброса наружного воздуха с котлом без конденсации выберите настройки так, чтобы температура обратной линии в котел была не ниже 140 ° F, чтобы предотвратить конденсацию.Однако при выборе уставок кривой сброса наружного воздуха для конденсационного котла выбирайте такие настройки, чтобы температура воды, возвращающейся в котел, была ниже 130 ° F. Это гарантирует, что температура обратки будет достаточно низкой для конденсации, что значительно повысит энергоэффективность системы (более подробную информацию см. В Arena 2012). Чтобы гарантировать, что температура обратки ниже 130 ° F, температуру подачи, скорее всего, придется снизить до значения ниже заводской настройки. Убедитесь, что используемые излучатели тепла (плинтусы, радиаторы и т. Д.)) имеют правильный размер, исходя из средней температуры в распределительном контуре. Если они меньше размера, они не будут отдавать достаточно тепла в помещение, и вода будет возвращаться в котел при слишком высокой температуре, предотвращая конденсацию. Системы теплого пола обычно настраиваются для работы при более низких температурах при установке, поэтому они не требуют дополнительной регулировки температуры подачи котла.

Если вы выбираете обогреватели с носками в домах, где есть конденсационные котлы с элементами управления сбросом наружного воздуха, убедитесь, что указанная модель с носками способна работать при низких температурах.Многие из доступных в настоящее время нагревателей пальцев ног не будут работать при температуре подачи ниже 140 ° F. Правильно спроектированная и сконфигурированная конденсационная гидронная система будет иметь температуру в обратной линии ниже 130 ° F большую часть года, в результате чего пассажиры останутся без тепла в помещениях с обогревателями.

В энергоэффективных домах с высокой степенью теплоизоляции и оборудованием правильного размера из-за проблем с комфортом в ночное время могут возникнуть проблемы со стороны потребителей. Котел, размер которого соответствует расчетной тепловой нагрузке дома, не будет иметь достаточной мощности для восстановления после спада в разумные сроки, особенно если система спроектирована с управлением сбросом наружного воздуха.Наружные регуляторы сброса согласовывают температуру подачи котла с тепловой нагрузкой в ​​зависимости от текущих внешних условий, что серьезно ограничивает способность системы повышать температуру в помещении. Если котел был настроен с контролем сброса наружного воздуха и не имел возможности его отменить, посоветуйте домовладельцам не устанавливать обратно температуру термостата в ночное время. Это также рекомендуется, если дом очень энергоэффективен и котел рассчитан на расчетную тепловую нагрузку.

Если вы знаете, что домовладелец будет использовать стратегию понижения температуры, или если вы хотите предоставить такую ​​возможность, вы можете установить средства управления для ускорения восстановления температуры, такие как 1) контроль наддува, который автоматически повышает целевую температуру на выходе котла, если потребность в тепле не выполняется в течение установленного количества минут, 2) внутренний датчик, который работает с управлением сбросом наружного воздуха, чтобы компенсировать задержки в ответе на основе внутренней температуры, или 3) простой ручной переключатель.Увеличение мощности излучателей тепла и, возможно, котла может потребоваться для удовлетворения дополнительной нагрузки, возникающей в периоды восстановления после снижения.

Если размер котла превышает расчетную нагрузку, превышение размеров тепловых излучателей поможет сократить короткие циклы работы котла. Это может быть единственный вариант в ситуациях, когда самые маленькие котлы слишком велики для расчетной нагрузки или имеется несколько зон, каждая из которых имеет очень малую нагрузку по сравнению с мощностью котла. В этих случаях увеличение размеров излучателей сократит цикличность, улучшит время отклика и повысит эффективность.Обратите внимание, что многие производители устанавливают максимальную разницу температур между подачей и обраткой котла для защиты теплообменника. Превышение размера излучателя тепла приведет к увеличению дельты Т, поэтому убедитесь, что вы не увеличили размер до такой степени, что предел производителя будет превышен. При установке котла без конденсации убедитесь, что увеличение эмиттера не приводит к температуре обратной воды ниже 140 ° F.

Как для конденсационных, так и для неконденсирующих котлов отключение в теплую погоду отключает котел, когда заданная температура превышается на температуру наружного воздуха.Бойлеры обычно поставляются с завода с настройкой отключения от 68 ° F до 72 ° F. В местах с большими перепадами температуры днем ​​и ночью или весной и осенью в домах, которые используют понижение температуры, если отключение установлено слишком низко, теплая утренняя температура снаружи может помешать поступлению тепла, даже если внутри все еще холодно. Убедитесь, что настройка отключения в теплую погоду не ниже желаемой температуры в помещении зимой. Например, если нормальная настройка составляет 70 ° F, отключение в теплую погоду должно быть не ниже 70 ° F.

Убедитесь, что ваша система включает в себя автоматическое управление последующей продувкой, при котором насос системы остается включенным в течение нескольких минут после прекращения работы котла для рассеивания тепла, остающегося в массе котла.

Некоторые производители котлов начали предлагать средства управления, которые могут ограничивать максимальную мощность котла. Это может быть особенно полезно, если котел используется как для отопления помещений, так и для горячего водоснабжения, и одна нагрузка значительно меньше другой. Этот предел сокращает цикличность в ситуациях, когда максимальная мощность нагрева котла значительно превышает потребность, например, когда водонагреватель требует тепла, а обогреватель - нет.

Отвод тепла - это стратегия, при которой избыточное тепло котла отводится в резервуар горячей воды для бытового потребления (ГВС) после удовлетворения потребности в отоплении помещения. Исследования показали, что этот метод может значительно повысить общую эффективность системы (Butcher 2011).

См. Отчет о руководящих принципах измерения Building America: Конденсационные котлы - оптимизация эффективности и времени отклика при работе в режиме пониженного давления для получения дополнительных указаний по настройке средств управления котлом.

Распределение

Одним из больших преимуществ водяного отопления является простота его зонирования.Системы лучистого отопления в старых домах часто устанавливались последовательно, при этом одна труба шла от котла сначала к одному радиатору, а затем к следующему (с последующей потерей температуры в каждом последующем излучателе). Но в более новых распределительных системах используются параллельные или первично-вторичные трубопроводы с отдельными зонами, которыми можно управлять с помощью отдельных термостатов, чтобы легко приспособить различные уставки температуры и графики.

Рисунок 3 . Котлы могут обеспечивать зональное отопление с параллельными контурами трубопроводов.(Изображение любезно предоставлено Calcs Plus)

Рисунок 4 . Котельная система может быть оснащена первичным и вторичным контурами для подачи горячей воды для различных целей. (Изображение любезно предоставлено Calcs Plus)

Рисунок 5 . Плинтусные радиаторы отопления - одно из средств распределения тепла горячей воды.

Рисунок 6 . Петли трубопровода PEX укладываются перед заливкой плиты для этой системы лучистого теплого пола. (Изображение любезно предоставлено TC Legend Homes)

Как выбрать и установить котел

  1. Выберите котел с максимальной производительностью, финансирование которого позволит удовлетворить расчетную тепловую нагрузку проекта.Если вы участвуете в программе энергоэффективности, выберите котел, который соответствует требованиям для вашей климатической зоны, как описано на вкладке «Соответствие».
  2. Устанавливайте в соответствии с применимыми стандартами, включая Стандарт 5 ACCA: Спецификации установки качества HVAC и Руководство ACCA для технических специалистов по качественной установке и Стандарт 9 ACCA: Протоколы проверки качества установки HVAC.
  3. Разработайте эффективную систему распределения, позволяющую зонировать.
  4. Подберите размер котла, предварительно рассчитав тепловую нагрузку дома. Рассчитайте тепловую нагрузку, как описано в Руководстве по основам ASHRAE. Также доступно множество программных продуктов, которые могут помочь вам в расчетах, и некоторые производители котлов включают рекомендации по выбору размеров или программное обеспечение на своих веб-сайтах. Если расчетная нагрузка равна или ниже минимальной мощности выбранного котла, рассмотрите альтернативные варианты отопительного оборудования с низкой нагрузкой, которые лучше соответствуют расчетной нагрузке дома.
  5. Установите котел в виде системы с прямым отводом воздуха, при которой воздух для горения подводится непосредственно к камере сгорания котла снаружи. Если котел должен использовать CAZ для воздуха для горения, убедитесь, что в CAZ имеется необходимый воздух для горения, и проведите испытание на безопасность горения после установки. комната. См. Методы расчета и подачи воздуха для горения в руководстве «Печи для сжигания».
  6. Выберите подходящий вентиляционный трубопровод в соответствии с Национальным кодексом по топливному газу (см. Вкладку «Соответствие»).
  7. Задайте настройки управления оборудованием для оптимизации эффективности системы, как описано выше и в Arena 2012.
  8. Если ваш котел нагревает гидро змеевик для принудительного нагрева воздуха, см. Компактное распределение воздуха и правильный выбор размеров воздуховодов HVAC.
  9. После установки котла и перед первым заполнением заполните систему водой с чистящим раствором. Дайте ему циркулировать в течение нескольких часов, чтобы удалить жир, масло и химические вещества с припоя и флюса. Слейте, затем залейте чистой водой.Если городская вода вызывает коррозию, включите ее первоначальную очистку. При правильной установке котел должен работать бесконечно долго, не требуя дополнительной воды или очистки.
  10. Для конденсационных котлов: обеспечить отвод конденсата в канализацию или прямо на улицу. Поскольку конденсат очень кислый, соблюдайте местные нормативные требования в отношении предварительной обработки конденсата перед его сбросом в канализацию. Защищайте конденсатопровод от замерзания. Предусмотрите вторичный (аварийный) дренажный поддон из прочного материала.
  11. Проверьте правильность работы котла, проверив внешний регулятор сброса и оценив регулятор наддува, если он установлен.
.

Смотрите также