Формула сопротивление теплопередаче


Сопротивление теплопередаче ограждающих конструкций. Расчет, таблица сопротивления теплопередаче :: BusinessMan.ru

При строительстве частных и многоквартирных домов приходится учитывать множество факторов и соблюдать большое количество норм и стандартов. К тому же перед строительством создается план дома, проводятся расчеты по нагрузке на несущие конструкции (фундамент, стены, перекрытия), коммуникациям и теплосопротивлению. Расчет сопротивления теплопередаче не менее важен, чем остальные. От него не только зависит, насколько будет дом теплым, и, как следствие, экономия на энергоносителях, но и прочность, надежность конструкции. Ведь стены и другие элементы ее могут промерзать. Циклы заморозки и разморозки разрушают строительный материал и приводят к обветшалости и аварийности зданий.

Теплопроводность

Любой материал способен проводить тепло. Этот процесс осуществляется за счет движения частиц, которые и передают изменение температуры. Чем они ближе друг к другу, тем процесс теплообмена происходит быстрее. Таким образом, более плотные материалы и вещества гораздо быстрее охлаждаются или нагреваются. Именно от плотности прежде всего зависит интенсивность теплопередачи. Она численно выражается через коэффициент теплопроводности. Он обозначается символом λ и измеряется в Вт/(м*°C). Чем выше этот коэффициент, тем выше теплопроводность материала. Обратной величиной для коэффициента теплопроводности является тепловое сопротивление. Оно измеряется в (м2*°C)/Вт и обозначается буквой R.

Применение понятий в строительстве

Для того чтобы определить теплоизоляционные свойства того или иного строительного материала, используют коэффициент сопротивления теплопередаче. Его значение для различных материалов дается практически во всех строительных справочниках.

Так как большинство современных зданий имеет многослойную структуру стен, состоящую из нескольких слоев различных материалов (внешняя штукатурка, утеплитель, стена, внутренняя штукатурка), то вводится такое понятие, как приведенное сопротивление теплопередаче. Оно рассчитывается так же, но в расчетах берется однородный аналог многослойной стены, пропускающий то же количество тепла за определенное время и при одинаковой разности температур внутри помещения и снаружи.

Приведенное сопротивление рассчитывается не на 1 м кв., а на всю конструкцию или какую-то ее часть. Оно обобщает показатель теплопроводности всех материалов стены.

Тепловое сопротивление конструкций

Все внешние стены, двери, окна, крыша являются ограждающей конструкцией. И так как они защищают дом от холода по-разному (имеют различный коэффициент теплопроводности), то для них индивидуально рассчитывается сопротивление теплопередаче ограждающей конструкции. К таким конструкциям можно отнести и внутренние стены, перегородки и перекрытия, если в помещениях имеется разность температур. Здесь имеются в виду помещения, в которых разность температур значительная. К ним можно отнести следующие неотапливаемые части дома:

  • Гараж (если он непосредственно примыкает к дому).
  • Прихожая.
  • Веранда.
  • Кладовая.
  • Чердак.
  • Подвал.

В случае если эти помещения не отапливаются, то стену между ними и жилыми помещениями необходимо также утеплять, как и наружные стены.

Тепловое сопротивление окон

В воздухе частицы, которые участвуют в теплообмене, находятся на значительном расстоянии друг от друга, а следовательно, изолированный в герметичном пространстве воздух является лучшим утеплителем. Поэтому все деревянные окна раньше делались с двумя рядами створок. Благодаря воздушной прослойке между рамами сопротивление теплопередаче окон повышается. Этот же принцип применяется для входных дверей в частном доме. Для создания подобной воздушной прослойки ставят две двери на некотором расстоянии друг от друга или делают предбанник.

Такой принцип остался и в современных пластиковых окнах. Единственное отличие – высокое сопротивление теплопередачи стеклопакетов достигается не за счет воздушной прослойки, а за счет герметичных стеклянных камер, из которых откачан воздух. В таких камерах воздух разряжен и практически нет частиц, а значит, и передавать температуру нечему. Поэтому теплоизоляционные свойства современных стеклопакетов намного выше, чем у старых деревянных окон. Тепловое сопротивление такого стеклопакета – 0,4 (м2*°C)/Вт.

Современные входные двери для частных домов имеют многослойную структуру с одним или несколькими слоями утеплителей. К тому же дополнительное теплосопротивление дает установка резиновых или силиконовых уплотнителей. Благодаря этому дверь становится практически герметичной и установка второй не требуется.

Расчет теплового сопротивления

Расчет сопротивления теплопередаче позволяет оценить потери тепла в Вт и рассчитать необходимое дополнительное утепление и потери тепла. Благодаря этому можно грамотно подобрать необходимую мощность отопительного оборудования и избежать лишних трат на более мощное оборудование или энергоносители.

Для наглядности рассчитаем тепловое сопротивление стены дома из красного керамического кирпича. Снаружи стены будут утеплены экструдированным пенополистиролом толщиной 10 см. Толщина стен будет два кирпича – 50 см.

Сопротивление теплопередаче вычисляется по формуле R = d/λ, где d – это толщина материала, а λ – коэффициент теплопроводности материала. Из строительного справочника известно, что для керамического кирпича λ = 0,56 Вт/(м*°C), а для экструдированного пенополистирола λ = 0,036 Вт/(м*°C). Таким образом, R (кирпичной кладки) = 0,5 / 0,56 = 0,89 (м2*°C)/Вт, а R (экструдированного пенополистирола) = 0,1 / 0,036= 2,8 (м2*°C)/Вт. Для того чтобы узнать общее теплосопротивление стены, нужно сложить эти два значения: R = 3,59 (м2*°C)/Вт.

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

Материал R, (м2 * °C)/Вт
Железобетон 0,58
Керамзитобетонные блоки 1,5-5,9
Керамический кирпич 1,8
Силикатный кирпич 1,4
Газобетонные блоки 3,4-12,29
Сосна 5,6
Минеральная вата 14,3-20,8
Пенополистирол 20-32,3
Экструдированный пенополистирол 27,8
Пенополиуретан 24,4-50

Теплые конструкции, методы, материалы

Для того чтобы повысить сопротивление теплопередаче всей конструкции частного дома, как правило, используют строительные материалы с низким показателем коэффициента теплопроводности. Благодаря внедрению новых технологий в строительстве таких материалов становится все больше. Среди них можно выделить наиболее популярные:

  • Дерево.
  • Сэндвич-панели.
  • Керамический блок.
  • Керамзитобетонный блок.
  • Газобетонный блок.
  • Пеноблок.
  • Полистиролбетонный блок и др.

Дерево является весьма теплым, экологически чистым материалом. Поэтому многие при строительстве частного дома останавливают выбор именно на нем. Это может быть как сруб, так и оцилиндрованное бревно или прямоугольный брус. В качестве материала в основном используется сосна, ель или кедр. Тем не менее это довольно капризный материал и требует дополнительных мер защиты от атмосферных воздействий и насекомых.

Сэндвич-панели – это довольно новый продукт на отечественном рынке строительных материалов. Тем не менее его популярность в частном строительстве очень возросла в последнее время. Ведь его основными плюсами является сравнительно невысокая стоимость и хорошее сопротивление теплопередаче. Это достигается за счет его строения. С наружных сторон находится жесткий листовой материал (ОСП-плиты, фанера, металлический профиль), а внутри - вспененный утеплитель или минеральная вата.

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Нюансы применения утеплителей

Если сопротивление теплопередачи стены недостаточно для данного региона, то в качестве дополнительной меры могут применяться утеплители. Утепление стен, как правило, производится снаружи, но при необходимости может применяться и по внутренней части несущих стен.

На сегодняшний день существует множество различных утеплителей, среди которых наибольшей популярностью пользуются:

  • Минеральная вата.
  • Пенополиуретан.
  • Пенополистирол.
  • Экструдированный пенополистирол.
  • Пеностекло и др.

Все они имеют очень низкий коэффициент теплопроводности, поэтому для утепления большинства стен толщины в 5-10 мм, как правило, достаточно. Но при этом следует учесть такой фактор, как паропроницаемость утеплителя и материала стен. По правилам, этот показатель должен возрастать наружу. Поэтому утепление стен из газобетона или пенобетона возможно только с помощью минеральной ваты. Остальные утеплители могут применяться для таких стен, если делается специальный вентиляционный зазор между стеной и утеплителем.

Заключение

Теплосопротивление материалов – это важный фактор, который следует учитывать при строительстве. Но, как правило, чем стеновой материал теплее, тем меньше плотность и прочность на сжатие. Это следует учитывать при планировке дома.

Коэффициент сопротивления теплопередаче

Определение и формула коэффициента сопротивления теплопередаче

Коэффициент сопротивления теплопередаче можно определить как отношение разности температур () на краях изолирующего материала к величине потока тепла (Q), который проходит через него на единицу площади:

   

Особенно часто используют коэффициенты сопротивления теплопередаче и коэффициент теплопередачи в архитектуре и строительстве, характеризуя строительные материалы.

Коэффициент сопротивления теплопередачи связан с коэффициентом теплопроводности вещества (k) как:

   

где — толщина слоя вещества.

Чем выше R вещества, тем лучше его теплозащитные свойства.

Свойства коэффициента сопротивления теплопередаче

Коэффициент сопротивления теплопередачи зависит от свойств вещества, таких как плотность, наличия пор в материале, влажности и т.д. Так, плотное вещество имеет меньший коэффициент сопротивления теплопередачи в сравнении с рыхлым материалом. Увеличение коэффициента при уменьшении плотности вещества объясняется тем, что поры вещества заполнены воздухом, который имеет низкий коэффициент теплопередачи. Рост влажности воздуха ведет к уменьшению сопротивления теплопередачи, так как при увлажнении материала происходит заполнение пор водой, а она имеет низкий коэффициент сопротивления теплопередаче, почти в 20 раз меньший, чем воздух.

Используя такой параметр как коэффициент сопротивления просто рассчитать тепловые потери стен и (или) перекрытий дома:

   

S — площадь.

Если система состоит из нескольких материалов с разными коэффициентами сопротивления теплопередаче, то общее сопротивление теплопередачи является их суммой. Так, если стены являются многослойными, то равно:

   

В соответствии со стандартами законодательством РФ определены минимальные величины коэффициента сопротивления теплопередаче стен и перекрытий жилых домов для регионов страны.

Единицы измерения

Основной единицей измерения коэффициента сопротивления теплопередаче в системе СИ является:

2К/Вт

Примеры решения задач

Сопротивление теплопередаче строительных материалов

Строительство зданий требует соблюдения большого количества нюансов, факторов, способных повлиять на качество постройки. Существуют стандарты, нормы, от которых отходить не рекомендуется. До начала строительства необходимо создать план, произвести расчеты. Коэффициент сопротивления теплопередаче показывает, насколько быстро материалы пропустят холод с улицы в жилье.

Правильно рассчитать теплопередачу приведенного материала так же важно, как и другие данные. От полученных результатов зависит то, насколько жилище будет теплым, какие в нем показатели экономии тепла. Можно примерно рассчитать расход на энергию, затрачиваемую на отопление дома. Кроме того, будет ясна прочность, надежность сооружения.

Стенам и иным частям дома свойственно при больших морозах промерзание. Если не учитывать правила теплопередачи, дом может промерзнуть насквозь. Заморозка-размораживание приводит к скорейшему износу частей жилища, они ветшают, после чего здание может стать аварийным. Высокое сопротивление теплопроводности наружных стен и дверей помогает справиться с проникновением холода.

Показатели теплопроводности

Любой элемент в природе имеет различную степень проводимости. Тепло проходит сквозь него в зависимости от скорости движения частиц, которые способны передать температурные колебания. Чем частицы ближе находятся одна к другой, тем теплообмен будет проходить быстрее. Получается, что чем более плотный материал, тем быстрее он будет нагреваться или остывать. Плотность является основным фактором теплопередачи, показывая ее интенсивность. Таблица с данными для камня

Выражается данный показатель коэффициентом теплопроводности. Обозначение буквенное производится символом «λ». Единица измерения Вт/(м*Со). Чем больше численные данные этого коэффициента, тем лучше материал проводит тепло. Существует величина, обратная проводимости тепла, которая называется тепловое термическое сопротивление. Единица измерения: м2о/Вт. Буквенное обозначение «R».

Данные по регионам

Нормируемое сопротивление можно посмотреть в справочниках. Важно придерживаться норм, чтобы не пришлось дополнительно утеплять дом, так как холод легко проникает сквозь стены. Правильному теплообмену, такому, какой бы подходил для данного региона, должно предшествовать утепление стен и верное использование материалов.

Значения по регионам

Как применяются показатели в строительстве

Для каждого материала, используемого в строительстве, важно определить степень проводимости тепла. Теплоизоляционные свойства влияют на скорость промерзания стен, насколько материал подвержен воздействию холода. Показатель сопротивления при теплопередаче для любого современного материала уже вписан в справочники.

Современные технологии предполагают использование нескольких слоев для стен, дверей, поэтому показатели тепловой проводимости в них могут объединяться. Для показа общей степени проводимости принята величина «приведенное сопротивление теплопередаче». Таблица с данными для стеклопакетов

Рассчитать ее можно точно так же, как и предыдущие данные. Но учитывать следует несколько показателей теплопроводности. Второй вариант произведения расчетов теплоотдачи – использование однородного аналога многослойной стенки. Он должен пропускать такое же количество тепла за равный промежуток времени. Разница в температурах для внутренней части помещения и внешней должна быть одинаковой.

Расчет приведенного сопротивления производится не на квадратный метр, а на целую комнату или весь дом. Показатель помогает обобщить данные о проводимости тепла всего жилища, а точнее материалов, из которых оно изготовлено. Сопротивление для пола также необходимо учитывать.

Термическое сопротивление

Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.

Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении. Современные материалы

В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.

Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.

Как рассчитывается тепловое сопротивление

Данные после расчета теплового сопротивления помогут показать, насколько хорошо утеплен дом, какое количество тепла теряется в процессе. Таким образом, можно точно подобрать оборудование для утепления, правильно рассчитать мощность. Для примера будет произведен расчет одной из стен и дверей каркасного дома с керамическим кирпичом, что поможет понять, насколько хороши данные материалы для строительства и утепления. Утепление изнутри

Класс сопротивления для каждого материала разный. С обратной стороны он утеплен экструдированным пенополистиролом, толщина которого составляет 100 мм. Стены по толщине будут в два кирпича, что равняется 500 мм. Формула для вычисления сопротивления:

R = d/λ, где d – толщина компонентов стены, λ – коэффициент теплопроводности.

По справочнику необходимо посмотреть данные λ. Это число 0,56 для кирпича и 0,036 – для полистирола.

R = 0,5 / 0,56 = 0,89 – для кирпича.

R = 0,1 / 0,036 = 2,8 – для полистирола.

Общий показатель будет суммой этих величин. R = 0,89 + 2,8 = 3,59. Данная формула с приведенными данными имеет численное значение. Его можно сравнить с показаниями с улицы, верными в вашем регионе, и понять, правильно ли применены утеплители. Можно определить класс по приведенному выше сопротивлению.

Теплые конструкции

Для увеличения теплового термического сопротивления следует использовать современные материалы, в которых показатели проводимости тепла максимально низкие. Количество таких материалов сейчас увеличивается. Популярными стали:

  1. Деревянные конструкции. Считаются экологически чистым материалом, потому многие предпочитают вести строительство, используя именно этот компонент. Использоваться может любой вид окультуренной древесины: сруб, бревно, брус. Чаще применяют сосну, ель или кедр, показатели проводимости которых по сравнению с другими материалами достаточно низкие. Необходимо произвести защиту от атмосферных воздействий, вредителей. Материал покрывается дополнительным слоем, защищающим от негативных факторов.
  2. Керамические блоки.
Пример защиты от внешнего воздуха
  1. Сэндвич-панели. В последнее время этот материал становится все более популярным. Основные преимущества: дешевизна, высокие показатели сопротивляемости холоду. В материале имеется множество воздушных ячеек, иногда делают «пенную» структуру. Например, некоторые типы панелей имеют вертикальные воздушные каналы, которые неплохо защищают от холода. Другие компоненты делаются пористыми, чтобы большое количество заключенного воздуха помогло справиться с поступающим холодом.
  2. Керамзитобетонные материалы. Их использование также позволит надежно защитить жилище от холода.
  3. Пеноблоки. Конструкция делается пористой, но достигается это не простым вклиниванием воздушных прослоек, а путем произведения химической реакции. Иногда в цемент добавляется пористый материал, который поверху покрывается застывшим раствором.

Важные моменты для применения утеплительных материалов

При проектировании жилища необходимо учитывать погодные условия местности. Если данные не учтены, термическое сопротивление теплопередаче может быть недостаточным, что позволит холоду проникать сквозь стены. Обычно, если такое происходит, используются утеплители. Иногда утепление производится внутри дома, но обычно оно проводится по наружным стенам. Утепляются несущие элементы и части, расположенные в непосредственном контакте с улицей. Утепление жилища

Показатели современных теплоизоляционных материалов очень высокие, потому их не нужно использовать в большом количестве. Обычно для утепления хватает толщины до 10 мм. Не стоит забывать о паропроницаемости стен, дверей и утеплительных компонентов. Правила строительства требуют, чтобы этот показатель повышался из внутренних частей к внешним. Потому утеплять газобетонные или пенобетонные стены можно только минеральной ватой, показатели которой верны для приведенных требований. Внутреннее утепление

 

Кроме потерь тепла через стены дома оно может уходить через кровлю. Поэтому важно утеплять не только наружные элементы, но и уложить материал над потолком, чтобы жилье было надежно утеплено. Если нет возможности применять необходимый материал, можно сконструировать зазор для вентиляции. В любом случае не стоит забывать, что теплосопротивление для материалов является одной из важнейших величин. Обязательно учитывайте его при возведении нового дома.

 

 

Сопротивление теплопередаче стеклопакета таблица, гост, формула

Насколько эффективно окна будут выполнять теплозащитную функцию, профессионалы устанавливают при помощи специальных расчетов. Качество теплоизолирующих свойств стеклопакета, в соответствии с ГОСТ 26602.1-99, 24866-99 определяет такой показатель, как сопротивление теплопередаче [R0].

Как проводится измерение показателя (сопротивления теплопередаче коэффициента R0)

Потери тепла иногда количественно определяются с точки зрения теплосопротивления стеклопакета или коэффициента сопротивления теплопередаче R0. Это значение, обратное коэффициенту теплопередачи U. R = 1/U (при переводе Европейских коэффициентов U в Российские R0 не следует забывать, что наружные температуры, используемые для расчетов, сильно отличаются).

В свою очередь, коэффициент теплопередачи U, характеризует способность конструкции передавать тепло. Физический смысл ясен из его размерности. U = 1 Вт/м2С – поток тепла в 1 Ватт, проходящий через кв. метр остекление при разнице температуры (снаружи и внутри) в 1 градус по Цельсию (В Европейских странах коэффициент теплопроводности остекления рассчитывается согласно EN 673). Чем меньше получаемое в результате число, тем лучше теплоизоляционная функция светопрозрачной конструкции.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

В результате этот показатель характеризует не только конкретную функцию теплозащиты, но и качество всего производственного процесса, и качество готового продукта. Эту величину рекомендуется держать под контролем и измерять регулярно - и на различных этапах изготовления, и, с особой тщательностью, на готовых образцах продукции.

Как показатель влияет на выбор стеклопакета?

В каждом регионе, а также в крупных городах нашей страны действуют определенные строительные нормы, в которых указаны требуемые показатели R0тр для стеклопакета строительного назначения. В первую очередь, на них должны ориентироваться застройщики. Но практика показывает, что эти правила соблюдаются далеко не всегда. Поэтому для удобства выбора оконных конструкций STiS мы подготовили специальную таблицу с указанием сопротивления стеклопакетов теплопередаче. Ознакомившись с ней, вы можете убедиться, насколько высоко качество нашей продукции по этому показателю, а также определиться с подходящей конструкцией для остекления своего помещения.

Формула стеклопакета 1 Приведенное сопротивление теплопередаче, м2×°С/Вт
4М1-12-4М1 0,30
4М1-Аг12-4М1 0,32
4M1-16-И4 0,59
4M1-Ar16-И4 0,66
4M1-10-4M1-10-4M1 0,47
4M1-12-4M1-12-4M1 0,49
4M1-Ar10-4M1-Ar10-4M1 0,49
4M1-Ar12-4M1-Ar12-4M1 0,52
4M1-12-4M1-12-И4 0,68
4M1-16-4M1-16-И4 0,72
4M1-Ar6-4M1-Ar6-И4 0,64
4M1-Ar10-4M1-Ar10-И4 0,71
4M1-Ar12-4M1-Ar12-И4 0,75
4М1-Аr16-4М1-Аr16-И4 0,80
4SPGU-14S-4M1-14S-4M1 Теплопакет® 2.0 0,82
4SPGU-16S-4M1 Теплопакет® 2.0 0,57

Приведенное сопротивление теплопередаче для стеклопакетов указано с учетом всех технологических и производственных особенностей наших продуктов – использования мультифункциональных и низкоэмиссионных стекол, заполнения междустекольного пространства аргоном - газом с низкой теплопроводностью, применения в конструкциях фирменной теплой дистанционной рамки, специальных герметизирующих материалов, солнцезащитного, энергосберегающего покрытий и иных прогрессивных элементов и комплектующих.

  1. Расшифровку обозначений формул стеклопакета можно посмотреть здесь.

Коэффициент сопротивления теплопередаче: как рассчитать?

Коэффициент сопротивления теплопередаче — это специальный расчёт оптимального показателя теплопередачи стеклопакетов. Поскольку площадь стеклопакета составляет значительную часть пластикового окна, оконная конструкция должна обладать максимальными тепло- и звукоизоляционными свойствами. Для этого просчитывается коэффициент сопротивления теплопередаче.

Коэффициент сопротивления теплопередаче

[rek_custom1]
Коэффициент сопротивления теплопередаче — это степень сопротивления изделия переноса тёплого воздуха. Благодаря этому расчёту можно узнать, какое количество тепла уйдёт из помещения с учётом разницы температуры в один градус.

Коэффициент сопротивления теплопередаче — это важный расчёт при установке окна. Чтобы обеспечить в любое время года оптимальные климатические условия, нужно поставить на окна качественные стеклопакеты. Таким образом, у вас получится сэкономить на потреблении электроэнергии, кондиционирование и отопление.

Понятие теплопередачи — это отдача тепла с одной стороны на другую. Таким образом, температурный показатель у одной стороны выше, чем у другой. Сам процесс проходит между конструкцией. Поэтому при выборе подходящих стеклопакетов учитывается коэффициент сопротивления теплопередач.

Коэффициент тепловой передачи определяется количеством тепла — Вт. Он проходит через стороны помещения — м2. При этом определяется между ними разница на один градус — Ro. В Российской федерации действует только такое обозначение, которое помогает правильно оценить теплозащитные свойства строительных конструкций.

Коэффициент сопротивления — это величина, которая оценивает качество теплозащитных функций окна. Таким образом, чем меньше проходит потерь тепла, тем выше будет показатель сопротивления теплопередаче.

Коэффициент сопротивления: показатели

Формула стеклопакета обозначает определённый набор символов, который являет собой основные характеристики состава стеклопакета. Таким образом, формула определяет значение толщины и ширины промежутков между стёклами.

  1. Звукоизоляция, обозначающаяся как Дб, является основным параметром стеклопакета. Она необходима для снижения уровня постороннего шума, доносящегося с улицы.
  2. Толщина стеклопакета, обозначается как мм — показатель толщины стёкол и воздушных камер между ними.

Теплоизоляция — это коэффициент сопротивления теплопередаче

Чтобы повысить теплоизоляцию стеклопакета, можно рассматривать несколько способов:

  1. увеличение толщины стеклопакета, что изменит расстояние между сторонами;
  2. увеличение количества камер при установке двухкамерных стеклопакетов.

Стоит отметить, что однокамерные стеклопакеты на рынке представлены в двух вариантах показателя толщины стёкол — 24 и 32 мм. Но несмотря на разницу более чем в 10 мм они имеют одинаковые теплоизоляционные характеристики. Происходит это из-за конвекции между стёклами, поэтому расстояние между сторонами не может изменить коэффициент сопротивления.

Коэффициент сопротивления теплопередаче: советы по выбору стеклопакета

Основным параметром выбора стеклопакета является коэффициент тепловой передачи. Не рекомендуется в жилых помещениях ставить стеклопакет с сопротивлением менее 0,45. Этот показатель является строительной нормой, и при соблюдении всех правил стеклопакеты не могут быть изготовлены менее этого значения.

  1. Чтобы установить окна в квартире либо в загородном доме, рекомендуется ставить двухкамерный пакет. Однокамерное окно обладает низким показателем теплоизоляции, поэтому зачастую не отвечает требуемым строительным нормам.
  2. Важно отметить, что подбирая для себя наилучший вариант стеклопакета, нужно учитывать толщину и материал оконного профиля. Характеристики профильной системы имеют огромное значение для расчёта коэффициента сопротивления теплопередачи.
  3. Установка стеклопакета также имеет огромное значение. Двухкамерный пакет не может быть уставлен с толщиной менее 40 мм. Обратите внимание на энергосберегающие модели, они имеют особой покрытие, которое способно увеличивать коэффициент теплопередачи при помощи отражения света обратно.

Для производства стеклопакетов с энергосберегающей системой применяется два вида стёкол — твёрдое и мягкое низкоэмиссионое покрытие. Мягкое стекло не настолько качественное и прочное, как твёрдое. Поэтому оно получило большую востребованность у потребителя.

Для увеличения коэффициента передачи тепла сопротивления стеклопакетов пространство между стёклами заполняются специальным газом — аргоном. При этом коэффициент сопротивления взрастает на десять процента. Идеальным решением для квартиры станут двухкамерные и однокамерные энергосберегающие конструкции. Они имеют высокий уровень теплоизоляции.

Многие производители рекомендуют применять инновационные технологии, которые обеспечивают низкую тепловую проводимость. Инновационные методы позволяют улучшить теплоизоляционные характеристики однокамерных, и двухкамерных конструкций. Таким образом, становится возможным уменьшить образование конденсата за счёт повышения температурного режима.

Дополнительный параметр — шумоизоляция, её можно внедрить при помощи следующих способов:

  1. применения стёкол большей толщины;
  2. применять комбинацию стёкол различной толщины, что позволяет избежать звукового резонанса.

Снижение внешних шумов становится возможным только на несколько Дб. Таким образом, значительно не может быть понижен уровень восприятия человеком звуков. Воздействие акустического давления частоты и интенсивности звуковых колебаний напрямую влияют на человеческий орган и находится в зависимости от него.

Звукоизоляция представляет собой параметр стеклопакета, который может определить уровень снижения посторонних шумов, которые будут доноситься с улицы. Таким образом, при разнице звукоизоляции в 32 Дб, который оценивается в городе, как 70 Дб, ослабляется до 38 Дб. Улучшить показатели звукоизоляции возможно, подобрав асимметричные различной толщине воздушные камеры с разнообразной толщиной стёкол.

Расчёт и таблица коэффициента теплопроводности

Теплопроводность показывает, насколько эффективными изоляционными свойствами будет обладать стеклопакет. При этом малое значение отображается как «к» — небольшая теплопередача в соответствии с незначительной потерей тепла через конструкцию. В то же время теплоизоляционные свойства являются высокими. При этом коэффициент теплопроводности выражается количеством тепла в Вт, который проходит через 1 м2, которая ограждает его конструкции с разницей в температуре в обоих средах на один градус. Измеряется показатель как Вт/м2.

Высокий показатель теплопроводности может быть у металлов, что отображается как низкая температура. В этом случае изделие не имеет воздушных камер, которые обладают низкой теплопроводностью. Для строительных конструкций такой вариант можно считать оптимальным и востребованным. Независимо от материала окна, производитель обязан отображать на своей продукции коэффициент теплопередачи специальной маркировкой.

Конструкции, методы и материалы при расчёте теплового сопротивления

Чтобы повысить сопротивление теплопередаче, понадобится использовать наружные материалы с низким показателем коэффициента теплопроводности. Новые технологии строительства и материалы позволяют достичь оптимальных результатов. Среди популярных и востребованных наружных материалов стоит отметить: керамзитный блок, дерево, пеноблок, сэндвич-панели, а также керамический блок.

  1. Дерево является тёплым экологичным материалом. Многие предпочитают использовать его для строительства частных домов. Это может быть сруб, оцилиндрованное бревно либо прямоугольный брус. Довольно часто применяется сосна, ель. При этом капризный материал требует дополнительных мер защиты от атмосферного воздействия и насекомых.
  2. Сэндвич-панель — это новый продукт на отечественном рынке материалов. Его популярность в частном строительстве возрастает в последнее время. К преимуществам стоит отнести невысокую стоимость. А также хорошее сопротивление теплопередачи. Такой параметр достигается за счёт строения. С наружных сторон находится листовой материал. Это может быть плита, фанера либо металлический профиль. Внутри системы находится утеплитель из пены либо минеральная вата.
  3. Строительный блок имеет высокий коэффициент сопротивления теплопередаче, в отличие от кирпича. Он может быть достигнут из-за наличия в его структуре воздушных камер или вспененной структуры материала. Таким образом, некоторые керамические блоки имеют специальные отверстия. Они могут быть выложены параллельно кладке стены. Получаемые на выходе камеры с воздухом являются препятствием для теплопередачи. В других строительных блоках существует высокий коэффициент сопротивления теплопередачи, который может выражаться в пористой структуре. При этом он может быть достигнут различными способами. Первым способом является химическая реакция. Второй способ — это смешивание цементной смеси с пористым материалом. Такие варианты применимы для полистиролбетонных и керамзитобетонных блоков.

Применение утеплителя: нюансы коэффициента теплового сопротивления

Если имеется недостаточное сопротивление теплопередачи, это может зависеть от материала стены, к примеру, если речь идёт о кирпиче. Тогда необходимые меры могут быть применимы в качестве утеплителя. Утепление проводится только снаружи кирпича, но при необходимости может быть применимо по внутренней части для несущих стен. На сегодня существует множество утеплителей, которые повышают коэффициент сопротивления теплопередачи. К таким материалам стоит отнести пеностекло, экструдированный пенополистирол, минеральная вата, пенополиуретан и другие материалы.

Все они имеют определённые коэффициенты теплопроводности для утепления большинства стен при толщине в десять миллиметров, что является достаточным показателем. При этом нужно учитывать паропроницаемость утеплителя и материала. Остальные утеплители могут применяться для различных стен, для которых оставляется специальный зазор между стеной и утеплителем.

Надёжные компании-производители на своей продукции ставят коэффициент сопротивления теплопередачи стеклопакета на любых технологических операциях, особенно в процессе изготовления продукции. Прилагаемая таблица расчётов поможет определить коэффициент любого процесса, включая нанесение специальных покрытий и заполнение междустекольного пространства.

Этот показатель характеризуется не только конкретной функцией теплозащиты, но и качеством всего процесса производства и готового продукта. Таким образом, рекомендуется держать под контролем этот показатель и регулярно мерить разнообразные этапы изготовления готового образца продукции.

Важное место в строительстве занимает тепловое сопротивление материала. Чем стена теплее, тем будет меньший показатель плотности и прочности его. При планировке дома, заказывая услугу утепления стен, а также при покупке стеклопакетов важно учитывать коэффициент сопротивления теплопередачи. На этикетке у производителя можно найти таблицу с этим показателем, на маркировке и паспорте этого продукта. Стоит помнить, что для обеспечения нормальной теплопередачи в квартире коэффициент сопротивления должен быть не менее 0,45. Все меньшие значения не будут считаться эффективными.

SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.

При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

Расчет основан на российской нормативной базе:

  • СНиП 23-02-2003 "Тепловая защита зданий"
  • СП 23-101-2004 "Проектирование тепловой защиты зданий"
  • ГОСТ Р 54851—2011 "Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче"
  • СТО 00044807-001-2006 "Теплозащитные свойства ограждающих конструкций зданий"

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Отчет в PDF

Общий коэффициент теплопередачи

Теплопередача через поверхность, например стену, может быть рассчитана как

q = UA dT (1)

, где

q = теплопередача (Вт (Дж / с), БТЕ / ч)

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

A = площадь стены (м 2 , фут 2 )

dT = (t 1 - t 2 )

= разница температур по стене ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или теплообменника - с потоком жидкости с каждой стороны стены - можно рассчитать как

1 / UA = 1 / ч ci A i + Σ (s 9004 5 n / k n A n ) + 1 / h co A o (2)

где

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

k n = теплопроводность материала в слое n (Вт / (м · K), БТЕ / (час · фут · ° F) )

h ci, o = внутренняя или внешняя стенка индивидуальная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K), Btu / (фут 2 h o F) )

s n = толщина слоя n ( м, футы)

9 0002 Плоская стена с равной площадью во всех слоях - можно упростить до

1 / U = 1 / h ci + Σ (s n / k n ) + 1 / h co (3)

Теплопроводность - k - для некоторых типичных материалов (проводимость не зависит от температуры)

  • Полипропилен PP: 0.1 - 0,22 Вт / (м · К)
  • Нержавеющая сталь: 16 - 24 Вт / (м · К)
  • Алюминий: 205 - 250 Вт / (м · К)
Преобразовать между Метрические и британские единицы
  • 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o F)
  • 1 Вт / (м 2 K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Коэффициент конвективной теплопередачи - h - зависит от

  • тип жидкости - газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:

  • Воздух - от 10 до 100 Вт / м 2 K
  • Вода - 500 до 10 000 Вт / м 2 K

Многослойные стены - Калькулятор теплопередачи

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.

A - площадь (м 2 , футов 2 )

t 1 - температура 1 ( o C, o F)

t 2 - температура 2 ( o C, o F)

h ci - коэффициент конвективной теплоотдачи внутри стенки (Вт / (м 2 K), БТЕ / ( ft 2 h o F) )

s 1 - толщина 1 (м, фут) k 1 - теплопроводность 1 (Вт / (м K) , БТЕ / (час · фут · ° F) )

с 2 - толщина 2 (м, фут) k 2 - теплопроводность 2 (Вт / (м · К), Британские тепловые единицы / (час фут ° F) )

с 3 - толщина 3 (м, фут) k 3 - теплопроводность 3 (Вт / (м · К), БТЕ / (час · фут · ° F) )

h co - коэффициент конвективной теплопередачи снаружи стены ( Вт / (м 2 K), БТЕ / (фут 2 h o F) )

Тепловое сопротивление теплопередачи

Сопротивление теплопередачи банка быть выражено как

R = 1 / U (4)

где

R = сопротивление теплопередаче (м 2 K / W, ft 2 h ° F / BTU)

Стена разделена на участки термического сопротивления, где

  • теплопередача между жидкостью и стеной - это одно сопротивление
  • сама стена является одним сопротивлением
  • передача между стеной и t Вторая жидкость - это тепловое сопротивление

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное тепловое сопротивление стенкам, снижая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередаче
  • статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / Вт
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
  • внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
  • внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример - теплообмен в теплообменнике воздух-воздух

Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен из полипропилен PP, алюминий или нержавеющая сталь.

Коэффициент конвекции теплопередачи для воздуха составляет 50 Вт / м 2 K . Внутренняя температура теплообменника составляет 100 o C , а температура наружного воздуха 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)

Общий коэффициент теплопередачи для теплообменника из полипропилена

  • с теплопроводностью 0,1 Вт / м · К составляет

U PP = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / м · К :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью 205 Вт / мK :

U Al = 1 / (1 / ( 50 Вт / м 2 K 90 077) + ( 0.1 мм ) (10 -3 м / мм) / (205 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 4000 Вт

= 4 кВт

  • 1 Вт / (м 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Типичный общий коэффициент теплопередачи

  • Газ свободной конвекции - газ свободной конвекции: U = 1-2 Вт / м 2 K (типичное окно, воздух из помещения через стекло)
  • Газ без конвекции - принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
  • Свободная конвекция газа - конденсационный пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
  • Принудительная конвекция (проточная) Газ - Свободная конвекция газ: U = 3-10 Вт / м 2 K (пароперегреватели)
  • Принудительная конвекция (проточный) Газ - Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
  • Принудительная конвекция (проточный) газ - Принудительная жидкая (проточная) вода: U = 10-50 Вт / м 2 9 0022 K (охладители газа)
  • Принудительная конвекция (проточный) Газ - конденсирующийся пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
  • Безжидкостная конвекция - принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
  • Жидкостная конвекция - свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
  • Без жидкости Конвекция - принудительный ток жидкости (вода): U = 50 - 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в резервуаре для воды) , вода с рулевым управлением)
  • Конвекция без жидкости - Конденсирующийся пар воды: U = 300 - 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 - 500 Вт / м 2 K (другие жидкости)
  • Принудительная жидкость (текущая) вода - газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий камера сгорания + излучение)
  • Принудительная жидкость (текущая) вода - Свободная конвекционная жидкость: U = 500-1500 Вт / м 2 K (охлаждающий змеевик - перемешиваемый)
  • Принудительная жидкость (текущая) вода - Принудительная жидкость (проточная вода): U = 900 - 2500 Вт / м 2 K (теплообменник вода / вода)
  • Принудительная жидкая (проточная) вода - Конденсирующий пар водяной: U = 1000 - 4000 Вт / м 2 K (конденсаторы паровая вода)
  • Кипящая жидкая вода - свободная конвекция, газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
  • Кипящая жидкая вода - принудительное течение жидкости (вода) : U = 300 - 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
  • Кипящая жидкая вода - Конденсирующий пар воды: U = 1500 - 6000 Вт / м 2 K (испарители пар / вода)
.

Для передачи тепла от цилиндра двигателя к охлаждающей жидкости можно предположить последовательный путь. Например:

Рис. 13. Схема из трех резисторов для стенки поршневого цилиндра

Например, предположим, что температура газа в баллоне составляет 1200 K, и температура охлаждающей жидкости - 300 К. Теплопроводность цилиндра 80 Вт / мК, а его толщина составляет ½ дюйма (0,012 м). Также предположим, что коэффициент конвекции равен 200 на со стороны газа и 1000 со стороны охлаждающей жидкости.

затем

Термическое сопротивление газового слоя R газ составляет 1 / час = 1/200 = 50 x 10 -4

Тепловое сопротивление стенки цилиндра, R стенки составляет L / k = 0,012 / 80 = 1,5 x 10 -4

Тепловое сопротивление охлаждающей жидкости R охлаждающей жидкости составляет 1 / час = 1/1000 = 10 x 10 -4

Наибольшее сопротивление - это сопротивление со стороны газа, R , газ. Это означает, что передача тепла в этом случае относительно нечувствительна. к типу материала, из которого сделана стена. Если цилиндр был из алюминия вместо стали общая теплопередача существенно не изменится. Для вышеуказанного сопротивления, общая теплопередача составляет около 150 000 Вт / м2.

.

Формула теплопередачи

Тепло, мера тепловой энергии, может передаваться из одной точки в другую. Тепло течет от точки с более высокой температурой к точке с более низкой температурой. Теплосодержание, Q , объекта зависит от его удельной теплоемкости, c , и его массы, м . Теплопередача - это измерение тепловой энергии, передаваемой, когда объект с определенной удельной теплоемкостью и массой претерпевает определенное изменение температуры.

Теплопередача = (масса) (удельная теплоемкость) (изменение температуры)

Q = mcΔT

Q = теплосодержание в Джоулях

м = масса

c = удельная теплоемкость, Дж / г ° C

T = температура

ΔT = изменение температуры

Формула теплопередачи Вопросы:

1) Сколько энергии передается, если медный блок массой 50 г нагреть от 20 ° C до 100 ° C? Удельная теплоемкость меди Cu равна c = 0.386 Дж / г ° С.

Ответ: Изменение температуры Δ T = 100 ° C - 20 ° C = 80 ° C. Масса, m = 50 г. Используйте формулу теплопередачи.

Q = mcΔT

Q = (50 г) (0,386 Дж / г ° C) (80 Дж / г ° C)

Q = 1544 Джоуля

2) Удельная теплоемкость алюминия c = 0,900 Дж / г ° C. Какая масса алюминия требуется для передачи тепла в 1500 Дж, если изменение температуры составляет 33 ° C?

Ответ: Изменение температуры ΔT = 33 ° C и теплоемкости алюминия c = 0.900 Дж / г ° С. Теплоотдача Q = 1500 Дж.

Q = mcΔT

м = Q / (cΔT)

м = 1500 Дж / (0,900 Дж / г ° C) (33 ° C)

м = 1500 Дж / (29,7 Дж / г)

м = 50,51 г

.

Потери тепла при передаче через элементы здания

Передача тепла через стену здания или аналогичную конструкцию может быть выражена как:

H t = UA dt (1)

где

H т = тепловой поток (БТЕ / час, Вт, Дж / с)

U = общий коэффициент теплопередачи, «U-значение» (БТЕ / час фут 2 o F, Вт / м 2 K)

A = площадь стены (футы 2 , м 2 )

dt = разница температур ( o F, K)

Общий коэффициент теплопередачи - коэффициент теплопередачи - описывает, насколько хорошо строительный элемент проводит тепло или скорость передачи тепла (в ваттах или БТЕ / час) через одну единицу площади (м 2 или фут 2 ) o f структура, деленная на разницу температур по всей конструкции.

Онлайн-калькулятор тепловых потерь

U-значение (БТЕ / час фут 2 o F, Вт / м 2 K)

Площадь стены (футы 2 , м 2 )

Разница температур ( o F, o C, K)

Общие коэффициенты теплопередачи некоторых распространенных строительных элементов

гофрированный металл - неизолированный
Строительный элемент Коэффициент теплопередачи
U-значение
(БТЕ / (час фут 2 o F)) (Вт / (м 2 K))
Двери Одиночный лист - металл 1.2 6,8
1 дюйм - дерево 0,65 3,7
2 дюйма - дерево 0,45 2,6
Кровля 2,6
1 дюйм дерева - неизолированный 0,5 2,8
2 дюйма дерева - неизолированный 0,3 1,7
1 дюйм дерева - изоляция 1 дюйм 0.2 1,1
Дерево 2 дюйма - изоляция 1 дюйм 0,15 0,9
2 дюйма - бетонная плита 0,3 1,7
2 дюйма - бетонная плита - изоляция 1 дюйм 0,15 0,9
Окна Вертикальное одинарное остекление в металлической раме 5,8
Вертикальное одинарное остекление в деревянной раме 4.7
Вертикальное окно с двойным остеклением, расстояние между стеклами 30-60 мм 2,8
Вертикальное окно с тройным остеклением, расстояние между стеклами 30-60 мм 1,85
Герметичное вертикальное окно с двойным остеклением , расстояние между стеклами 20 мм 3,0
Вертикальное герметичное тройное остекление, расстояние между стеклами 20 мм 1,9
Вертикальное герметичное двойное остекление с покрытием «Low-E» 0.32 1,8
Вертикальное окно с двойным остеклением с покрытием Low-E и заполнением тяжелым газом 0,27 1,5
Вертикальное окно с двойным остеклением с 3 пластиковыми пленками (с покрытием Low-E) и заполнение тяжелым газом 0,06 0,35
Горизонтальное одинарное стекло 1,4 7,9
Стены 6 дюймов (150 мм) - заливной бетон 80 фунтов / фут 3 0.7 3,9
10 дюймов (250 мм) - кирпич 0,36 2,0

Значения U и R

Значение U (или U-фактор) является мерой скорости потеря или получение тепла из-за конструкции материалов. Чем ниже коэффициент U, тем выше сопротивление материала тепловому потоку и тем лучше изоляционные свойства. Значение U - это величина, обратная значению R.

Общее значение U для конструкции, состоящей из нескольких слоев, может быть выражено как

U = 1 / ∑ R (2)

, где

U = коэффициент теплопередачи (БТЕ / hr ft 2 o F, Вт / м 2 K)

R = «R-value» - сопротивление тепловому потоку в каждом слое (hr ft 2 o F / Btu, м 2 K / Вт)

R-значение одного слоя может быть выражено как:

R = 1 / C = s / k (3)

, где

C = проводимость слоя (БТЕ / ч · фут 2 o F, Вт / м 2 K)

k = теплопроводность материала слоя (BTU in / час фут 2 o F, Вт / м · К)

с = толщина слоя (дюймы, м)

Примечание! - в дополнение к сопротивлению в каждом строительном слое - существует сопротивление внутренней и внешней поверхности окружающей среде.Если вы хотите добавить поверхностное сопротивление к вычислителю U ниже - используйте один - 1 - для толщины - l t - и поверхностное сопротивление для проводимости - K .

Онлайн Значение U Калькулятор

Этот калькулятор можно использовать для расчета общего значения U для конструкции с четырьмя слоями. Добавьте толщину - l t - и проводимость слоя - K - для каждого слоя.Если количество слоев меньше четырех, замените толщину одного или нескольких слоев нулем.

1. с (дюйм, м) k (британская тепловая единица дюйм / час фут 2 o F, Вт / м · K)

2. с (дюйм, м) k (британская тепловая единица дюйм / час фут 2 o F, Вт / м · К)

3. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / м · К)

4. с (дюйм, м) k (БТЕ дюйм / час фут 2 o F, Вт / м · К)

Пример - значение U Бетонная стена

Бетонная стена толщиной 0.25 (м) и проводимость 1,7 (Вт / мК) используются для значений по умолчанию в калькуляторе выше. Сопротивление внутренней и внешней поверхности оценивается в 5,8 (м 2 K / Вт) .

Значение U можно рассчитать как

U = 1 / (1 / (5,8 м 2 K / Вт) + (0,25 м) / (1,7 Вт / мK))

= 3,13 Вт / м 2 K

R-значения некоторых распространенных строительных материалов

4 um плита 5/8 " 9030 0,010 9030 -значения некоторых обычных конструкций стен
Материал Сопротивление
R-значение
(hr ft 2 o F / Btu) 2 K / W)
Деревянный сайдинг со скосом 1/2 "x 8", внахлест 0.81 0,14
Деревянный сайдинг со скосом 3/4 "x 10", внахлест 1,05 0,18
Штукатурка (на дюйм) 0,20 0,035
Строительная бумага 0,01
Фанера 1/4 " 0,31 0,05
Фанера 3/8" 0,47 0,08
Фанера 1/2 " 0.62 0,11
Оргалит 1/4 " 0,18 0,03
Мягкая плита, сосна или аналогичный материал 3/4" 0,94 0,17
Мягкая плита, сосна или аналогичный 1 1 2 " 1,89 0,33
Мягкая плита, сосна или аналогичный 2 1/2" 3,12 0,55
Гипсокартон 1/2 " 0,45 0,08
0.56 0,1
Стекловолокно 2 дюйма 7 1,2
Стекловолокно 6 дюймов 19 3,3
Обычный кирпич на дюйм
Материал Сопротивление
R-значение
(час фут 2 o F / BTU) 2 K / Вт )
Стенка 2 x 4, неизолированная 5 0.88
Стена с каркасом 2 x 4 с изоляцией из войлока 3 1/2 дюйма 15 2,6
Стена с каркасом 2 x 4 с жесткой панелью из полистирола 1 ", изоляционным покрытием 3 1/2" 18 3,2
Стена с каркасом 2 x 4 с изоляционной панелью 3/4 ", изоляцией из войлока 3 1/2", изоляцией из полиуретана 5/8 " 22 3,9
Стена с каркасом 2 x 6 с Изоляционное покрытие 5 1/2 " 23 4
Стена с 2 х 6 стойками с изоляционной панелью 3/4", изоляция из войлока 5 1/2 ", изоляция из полиуретана 5/8" 28 4 .9
.

Смотрите также