Ребристые плиты покрытия ширина


Плиты ребристые перекрытий: размеры, характеристики

Ребристые плиты перекрытия – конструкционные элементы из железобетона, которые активно используются в современном мало- и многоэтажном строительстве. Плиты отличаются великолепными характеристиками прочности, надежности, несущей способности, равномерно распределяют серьезные нагрузки, гарантируют безопасность эксплуатации зданий даже в условиях повышенной сейсмической активности.

Ребристые перекрытия имеют цельное основание, а также ребристые элементы по бокам, благодаря чему способны выдерживать немалые нагрузки на изгиб. Для применения в условиях повышенных нагрузок плиты усиливают поперечными ребрами. Там, где нагрузки минимальны, бетон удаляют, добавляя его в зонах сжатия.

Благодаря этому сборная ребристая плита обладает максимальной прочностью, способностью переносить максимальные нагрузки при заметном уменьшении материала (экономия и снижение веса конструкции).

Шаг плиты перекрытия с балками не должен быть более 6 метров. Ребристая плита может выступать частью кровли либо цокольного этажа. Чаще всего такие элементы используют в промышленном строительстве, в жилом – редко, так как ребра создают неровную поверхность, которую трудно отделывать.

Плиты ребристые перекрытия производят из тяжелого/легкого, плотного силикатного бетона. Применяется разная стальная арматура (обозначается буквами/цифрами). Современные производители создают изделия по ГОСТу 28043-89.

Основные виды ребристых плит:
  • ПГ – без полостей
  • ПВ – с отверстиями для вентиляции
  • ПФ – с фонарями
  • ПЛ – используются для удаления кровли

При выборе плиты обязательно нужно учитывать все типы предполагаемых нагрузок на конструкцию, смотреть размеры и технические характеристики изделия.

Применяемые материалы

Плиты ребристые перекрытий производятся в соответствии с установленными нормами и стандартами. Главной характеристикой плиты является единица учета нагрузок, которая считается в килограммах на квадратный метр.

 

Основные требования к качеству плит:
  • Точное соответствие размеров установленным в ГОСТе величинам
  • Четкое соблюдение параметров и характеристик указанным, что проверяется в ходе проверок и подтверждается сертификатами
  • Хорошая стойкость плит ко влаге, перепадам температур, деформации, появлению трещин

Материалы, из которых производят монолитное ребристое перекрытие, также должны быть качественными и соответствующими требованиям. Бетон должен обладать плотностью 1810-1990 килограммов на квадратный метр. Обязательно проверяется пористость, утвержденная в ГОСТе. По плотности тяжелые бетоны могут достигать показателя в 2550 килограммов.

Натяжение арматуры в плите измеряют после схватывания бетона. Тяжелые бетоны соответствуют маркам М455 либо М650, легкие – маркам М250 либо М300.

Арматура должна быть произведена из стали марок, указанных в ГОСТе. Все арматурные каркасы должны строго соответствовать стандартам. Могут меняться лишь показатели натяжения и то максимум на 10%.

В производстве ребристых плит используют арматуру из разрешенных сталей нужного диаметра, с определенными размерами и формой петель, напряжением электромеханическим/механическим методом. Все металлические элементы обязательно обрабатываются антикоррозийными составами.

При условии соблюдения всех норм плиты получаются жесткими и прочными, способными долго выдерживать серьезные нагрузки.

Сфера использования

Ребристые монолитные перекрытия используются там, где нужно: сформировать воспринимающую нагрузку перекрытия для крупнопанельного объекта промышленного назначения, создать перекрытие чердачного типа в административном/жилом здании. В процессе монтажа обязательно соблюдают интервал между несущими опорами, учитывают расчетные нагрузки.

Плита ребристая перекрытия может использоваться:
  • При температуре до +50С там, где наблюдаются соответствующие особенности технологического цикла в условиях промышленных предприятий
  • При температуре до -40С в конструкции сооружений, которые постоянно находятся в условиях естественно низких температур (из-за особенностей климата)
  • В регионах, где сейсмичность достигает 9 баллов (но не более)
  • В условиях воздействия среднеагрессивных газообразных составов, которые влияют на железобетон
  • В отапливаемых помещениях, где установлен стабильный температурный режим
  • При условиях температуры ниже -40С и выше +50С, если перекрытие было сделано по специальному заказу, что обязательно отображается в документации

Конструктивные особенности

В соответствии с работающими в конкретных условиях нагрузками, технические характеристики ребристых плит могут меняться – добавляются поперечные ребра, что повышает прочность. Изделия лучше всего работают под влиянием нагрузки на изгиб, бетон сосредотачивается в местах сжатия, а на участках растяжения сконцентрирован минимально.

Мощная стальная арматура позволяет экономить бетонный раствор, уменьшает толщину перекрытия и его вес без ущерба прочности. Плиты могут быть выполнены в разных типоразмерах, обладать различным весом, толщиной, предполагать то или иное число ребер усиления.

Конструкция обязательно предусматривает специальные монтажные скобы (петли), благодаря которым реализуются погрузочно-разгрузочные работы, осуществляется установка плиты на объекте, ее фиксация. Установку выполняют специальными захватными приспособлениями, с привлечением спецтехники.

В процессе монтажа монолитной ребристой плиты перекрытия изделие поднимают подъемным краном на большую высоту без перекосов, строго параллельно линии горизонта. Именно поэтому петли на плитах должны быть надежными и прочными, сделанными в соответствии с правилами техники безопасности (до начала монтажа все элементы проверяются на предмет отсутствия дефектов).

Возможна и беспетлевая установка при условии предусмотренных отверстий, расположение и размеры которых заказчик обязательно согласовывает с производителем до начала процесса изготовления плит.

Параметры

Размеры ребристых плит перекрытия могут быть разными. По нормативным документам, высота плит может быть 30 или 40 сантиметров. А вот длина и ширина существенно отличаются. Ширина варьируется в пределах 1.5-3 метра, длина – 6-18 метров. Очень важным параметром является вес, который зависит от габаритов плиты и плотности бетона.

Для плит высотой 30 сантиметров установлены такие стандартные значения:
  • Длина – 5.65 метров
  • Ширина – 0.94-3 метра
  • Вес – для легких составов 1.16-3.08 тонны, для тяжелых 1.45-3.85.
  • Стандартные габариты – 3 х 6 метров, 3 х 12, 1.6 х 6.1, а также 3 х 18.1 и 1.6 х 12.2 метров.
Плиты высотой 40 сантиметров:
  • Длина – 5-6 метров
  • Ширина – 0.75-3 метра
  • Вес – легкие бетоны 1.1-3.8 тонны, тяжелые 1.37-4.73.

Виды и обозначение элементов перекрытий высотой 30 см

Данный тип плит предполагает уменьшенную высоту (30 сантиметров). Они обычно располагаются в определенных местах конструкции, что учитывается в проекте, вносится в чертеж.

По месту компоновки плиты бывают:
  • П1 – в стандартных рядах
  • П2 – для промежутков между несущими колоннами
  • П3 – в одном замкнутом узле, собирающем в одно целое колонны и несущие стены

Маркировка ребристых плит перекрытия уменьшенной толщины содержит всю информацию по стандарту. Обязательно обозначается типоразмер, максимальный коэффициент прочности, вид бетона и арматуры, особенности изделия (наличие вентиляционных отверстий, которые обозначаются цифрами 1-3).

Так, если плита маркируется П2-АтVЛ-Н-2, то тут:
  • П2 – это типоразмер
  • АтV – размер, тип стальной арматуры
  • Л – говорит о том, что изделие изготовлено из легкого бетона
  • Н – свидетельствует о том, что ребристые перекрытия данного типа подходят для нормальных условий, не предназначены для эксплуатации при наличии агрессивных факторов
  • 2 – наличие специального вентиляционного отверстия сечением 70 сантиметров

Классификация и маркировка продукции высотой 40 см

Ребристые перекрытия высотой 40 сантиметров также производятся по стандарту, делятся на классы в соответствии с конструктивными особенностями изделия.

Виды плит по типу контакта с опорой:
  • 1П – опираются на поверхности полок ригелей, выпускаются в 8 размерах, серия маркируется 1П1 – 1П8
  • 2П – при установке контактирует с верхней частью балок опорных. По стандарту выпускается лишь один вид продукции с обозначением 2П1, но на заказ могут быть выполнены и другие плиты (в Москве и регионах производители гарантируют учет всех пожеланий заказчика)

Для усиления бетонного массива арматура может быть в напряженном состоянии – это марки 1П1-1П6, а также 2П1. С ненапряженной арматурой производятся плиты 1П7 и 1П8.

Маркировка указывает на такие параметры:
  • Информация про габариты ребристой плиты перекрытия, что дает также сведения про максимально воспринимаемые нагрузки
  • Тип и класс арматуры
  • Показатели прочности и проницаемости бетона
  • Разнообразные конструктивные особенности (закладные элементы, пустоты и т.д.)

Аббревиатура 1П1-3Ат-VIТ расшифровывается так:

  • 1П1 – это типоразмер: говорит о том, что ширина плиты равна 3 метрам, длина – 5.55
  • 3 – в обозначении скрыта информация про несущую способность, соответствующую третьей группе
  • Ат-VI – индекс, указывающий на особенности армирования
  • Т – говорит о том, что ребристая плита выполнена из тяжелого бетона марки М400, который можно использовать в условиях влияния газообразных составов с небольшой степенью агрессивного воздействия

Рекомендации по расчетам нагрузки

Плиты ребристые представляют собой конструкции П-образной конфигурации, сделанные из железобетона. В форму укладывается напряженная или ненапряженная арматура, потом заливается бетоном определенной марки. Те или иные конструктивные элементы выбираются в соответствии с предполагаемыми нагрузками на перекрытие, указанными в проекте и расчетах.

Строительные конструкции рассчитываются в специальных программах. Учитываются наиболее важные характеристики: поперечные силы, крутящий момент, изгибающий импульс, сейсмическая опасность, величина снежного покрова, грунт (на котором строится объект), вес плиты и всего здания.

В диаграмме нагрузок определяются: оптимальные параметры пролетов, марка стали и объем арматуры, параметры самого перекрытия. Если все сделать правильно, то все важные показатели будут учтены. Таким образом, определяют марку и плотность бетона, тип и объем арматуры для производства железобетонной плиты, оптимальные размеры.

Все расчеты выполняются в килограммах на квадратный метр. Базовым для жилого дома считается значение, равное 400 кг/м2. Плита высотой около 12 сантиметров дает нагрузку в 255 кг/м2, бетонная стяжка пола добавляет до 110 кг/м2. Плиты делают объект устойчивым и жестким, повышая резистентность и долговечность. К полученным в результате расчетов данным закладывают добавочный коэффициент прочности в ½. Получается, что итоговая цифра равна где-то около 900 кг/м2.

После того, как готова графическая схема перекрытия, выбирают ребристые плиты нужного размера, которые равны расстоянию между пролетами и дают нужное усиление.

Качественные и произведенные по технологии ребристые плиты перекрытия обеспечивают надежность и прочность всей конструкции. Поэтому к их выбору и расчетам нужно подходить очень внимательно, учитывая все нюансы и тонкости.

ГОСТ 27215-87 «Плиты перекрытий железобетонные ребристые высотой 400 мм для производственных зданий промышленных предприятий. Технические условия»

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК "Трансстрой"СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Ребристые плиты перекрытия: технические характеристики, размеры гост

Технические характеристики и маркировки

На сегодняшний день предприятия по производству ЖБИ выпускают в продажу различные виды плит гост: конструкционного особо тяжелого, потрясающе легкого, силикатного достаточно плотного бетона. Присоединительные и габаритные размеры материалов, их форма должна соответствовать ГОСТ 28042-89. На основании этого железобетонные плиты могут иметь следующие размеры: 3х6, 3х12, 1,5х6, 3х18,1,5х12 метров.

Монтаж железобетонных плит перекрытия

Перекрытия устанавливаются только при помощи башенного или автомобильного крана, при этом следует произвести точный расчет. Для того чтобы схватить изделие надежным креплением грузоподъемного механизма, необходимы петли для монтажа. Их состояние и наличие проверяют во время приобретения и перед их установкой.

Монтаж плит: расчет расстояния между балками

Особенности установки ребристой поверхности, состоит в следующем:

  • На торцы поверхности стен, свай, балок, предназначенных для монтирования плит 3х6, наносится слой цементного раствора, который необходим для придания соединению герметичности и прочности. Не стоит допускать того, чтобы состав затвердел раньше времени, что нарушит целостность всей конструкции.
  • На крюк крана цепляют крюк паук с 4-мя стропами, на концах которых, расположены такие же крюки. Их надежно вставляют в петли и поднимают поверхность в горизонтальном положении.
  • Помимо крановщика, монтаж производит несколько стропальщиков, которые выравнивают положение подвешенных плит и обеспечивают расчет точности установки.
  • У всех плит гост имеется технологический уклон, в связи, с чем верхняя часть меньше, чем нижняя. По этой причине между соседними панелями имеются зазоры в 50-70 мм, заполняемые строительным раствором.
  • Петли для монтажа, соприкасающиеся друг с другом соединяют между собой при помощи стального прута, края которого подворачивают вовнутрь и затем сваривают. При этом расчет действие должен быть верным.

Снаружи сооружения должен остаться край, размеры которого не должны быть менее 0,15 м для кирпичной кладки. Такое же расстояние должно быть между плоскостью соприкосновения плит с несущими балками.

Железобетонные конструкции: виды плит

Для того чтобы понять как выложить материал, необходимо знать технические правила и технологию, предъявляемые к укладке плиты перекрытия. Разделить конструкции из железобетона можно таким образом:

  • ребристые, то есть шатровые;
  • круглопустотные перекрытия;
  • ребристые длинные материалы.

Некоторые потребители используют в строительстве железобетонные монолитные плиты, что относится к более дорогим вариантам и по карману не каждому. Даже верно сделанный расчет, не поможет в этом случае сэкономить. Самые популярные виды материала гост – крулгопустотные железобетонные. Они отличаются хорошей звукоизоляцией и теплопроводностью.

Что понадобится, чтобы произвести монтаж и расчет перекрытия

Для укладки материала гост, необходимо, следующее:

  • железобетонные круглопостные материалы;
  • цементный раствор;
  • автокран;
  • удобный мастерок;
  • надежная кувалда;
  • автоген либо болгарка;
  • лом и строительный уровень;
  • обычные пакли и щетки из стали;
  • раствор из гипса и извести;
  • простая гипсовая смесь;
  • материал для теплоизоляции;
  • аппарат для сварочных работ.

Нельзя сказать, что установка ребристой поверхности простое дело, так как это довольно рискованная и трудоемкая работа.

Фундамент у любого жилого объекта не может быть полностью гладким и ровным, поэтому прежде чем произвести монтаж стоит поработать над его поверхностью, к примеру, выложить на бетонной основе ряд кирпича. Убедится насколько ровная поверхность с помощью строительного уровня. Положить материал гост можно только на исключительно ровную поверхность, ведь от этого в дальнейшем будет зависеть срок эксплуатации здания в целом.

Необходимо позаботится о том, чтобы фундамент был как можно прочнее, потому что из-за небрежности грунта он может деформироваться, несмотря на то, насколько специалисты подошли к работе и при укладе перекрытий сооружение через некоторое время покосится.

Расчет перекрытий и их размеры

Закрепить надежно фундамент можно при помощи армированной сетки, на которую и будут затем наноситься строительный раствор и крепится перекрытие. Рекомендуется воспользоваться цементом М100, но не ниже. Высота слоя из цемента должна быть не меньше 50 см.

Перед установкой гост необходимо их подготовить. В том случае если имеются какие-либо изъяны, сколы или выступы, их необходимо нейтрализовать. Для того чтобы выяснить, как произвести монтаж плиты, перед их установкой стоит сделать расчет, таким образом чтобы расстояние между ними позволило закрыт все части. Карта, расчета довольно проста.

Перед тем как приступить к укладке гост формируется подожка из бетона. Монтаж строительного материала осуществляется исключительно при помощи автокрана, так как весят они не мало. При укладке стоит проследить за тем, чтобы каждое перекрытие легло ровно, при этом все элементы между собой должны четко быть состыкованы. Благодаря тому, что сформированная нами подложка будет некоторое время подвижна, так как цемент не застывает сразу же, можно легко исправить неточности установки, аккуратно поправляя их ломом. Изучить процесс более подробно поможет карта, со схемой установки.

Техника укладки перекрытия

Производить монтаж гост следует исключительно на капитальные стены будущей комнаты. Сооружение перегородок внутри осуществляется уже после установки перекрытий, опирающихся на стену на 12 см. Смежные материалы крепятся между собой строительными петлями. Для работы лучше воспользоваться цементно-песчаным раствором, жидкой консистенции, с хорошо просеянным песком, в противном случае попадание даже самой маленькой крупинки может привести к деформации потолка и пола.

После того, как были получены все размеры и осуществлена установка покрытий гост, между ними остаются рабочие швы, которые необходимо аккуратно зачистить. Щели при этом заполняются паклей, предварительно смоченной в гипсовом готовом растворе. Пакля должна хорошо улежаться. После высыхания смеси из гипса значительно увеличивается ее размер, благодаря чему пакля будет прижата максимально к стене. После оставшиеся щели затирают известково-гипсовой смесью. Торцы также заделываются, чтобы плиты в холодное время года не промерзали.

Для этого можно воспользоваться минеральной ватой, забутовочным кирпичом или бетонным раствором. Во время любого строительного действия может возникнуть непредвиденная ситуация, к примеру, поверхность могла треснуть, если были нарушены правила их хранения или нагрузки.

Избавляться от такого дорогого материала гост, просто глупо. Их можно выложить на капитальные стены. Или использовать при сооружении чердачного помещения, так как там нагрузка минимальна.

Иногда возникает потребность сделать конструкции несколько короче. Для того чтобы разрезать материал из железобетона, необходимо воспользоваться мощной надежной болгаркой. Но резать железобетонную поверхность полностью не надо.

Достаточно просто сделать надрез слегка наверху, сильно ударить кувалдой, тогда будут видны лишь арматурные прутья, которые разрезают болгаркой. Бывают случаи, когда необходимо отделить продольную, а не поперечную часть, для этого разрезается металлическая сетка, выступающая в качестве армирующего каркаса и поверхностный слой.

Все работы с данным видом материала и его укладку не стоит делать самостоятельно, ведь для этого необходимы специальные знания и определенные навыки в работе. Кроме того безе крана, установить плиты просто не получится из-за их достаточно тяжелого веса. Поэтому обратитесь за помощью к настоящим мастерам своего дела, и дом прослужит вам много лет, сохраняя свою устойчивость и форму.

Ребристые плиты перекрытия: размеры, ГОСТ, технические условия

Чтобы построить надежное здание, которое простоит много лет, нужны качественные строительные материалы. Одними из таковых являются плиты перекрытия. Они выдерживают огромные нагрузки, они являются не менее важной частью строения чем фундамент или стены. Благодаря своим свойствам, высокой надежности и возможности рационально распределять давление на опоры, ребристые плиты перекрытия достаточно популярны и заняли свою нишу.

Производство и применение ребристых панелей регламентируется нормативными документами. Для изделий высотой 300 мм — это ГОСТ 21506-2013 и 400 мм – ГОСТ 27215-2013. Важно чтобы панели изготавливались в неукоснительном соблюдении требования вышеуказанных норм.

Основные свойства и размеры

Соответственно методу опоры на поперечную балку (ригель) основы здания, п-образные плиты высотой 400 мм делятся на два типа: 1П с упором на полки ригеля и 2П с опиранием на верхнюю часть.

Для плит 1П рассчитано восемь размеров(1П1–1П8), а для 2П – один.

Размеры панелей по видам

Тип плиты

Размеры, см

длина

ширина

1П1

555

298,5

1П3

148,5

1П5

93,5

1П7

74

1П2

505

298,5

1П4

148,5

1П6

93,5

1П8

74

2П1

595

148,5

 

Панели ребристые высотой в 300 мм делятся на три вида и имеют такие размеры:

  • • П1- 5650х2985;
  • • П2-5650х1485;
  • • П3-5650х935.

Максимальные допустимые отклонения от стандартных при изготовлении плит не должны превышать:

  • • по длине панелей ±10 мм;
  • • по высоте ±5 мм;
  • • по ширине ±6 мм, если ширина плиты до 2,5 м и 8 мм более 2,5 м;
  • • по толщине ребра ±3 мм.

 

Сфера применения и достоинства

Ребристые плиты могут эксплуатироваться при температуре наружного воздуха от -40 до +50 °С.

Положительные качества таких изделий:

  • • надежность, прочность и устойчивость даже в зонах с сейсмической активностью;
  • • большой ассортимент размеров;
  • • длительный срок службы;
  • • пожаробезопасность;
  • • несложная эксплуатация, отсутствие необходимости ухода.

Данные свойства позволяют использовать данные плиты перекрытия практически везде, но все же предпочтительней их применять при монтаже перекрытий: чердачных, гаражных, подвальных помещений, промышленных зданий и жилых строениях, в основном панельных.

Но без минусов тоже не обошлось. Важный недостаток – довольно высокая цена, которая обусловлена сложностью изготовления панелей.

Монтаж

Установка плит производится при помощи автокрана и происходит в пять этапов.

  1. • Бетонным раствором заливаются места установки плит, для того чтобы они прочно и герметично соединились со стеной. Раствор должен быть свежим, нельзя допустить его затвердения, это нарушит монолитность здания.
  2. • Плита должна подыматься строго горизонтально и быть прочно закрепленной за четыре точки.
  3. • Подъем и установка изделия должны строго контролироваться.
  4. • После монтажа на стену зазоры между панелями должны быть устранены с помощью раствора.
  5. • Проводятся финальные работы по обработке петель для монтажа. Их нужно загнуть внутрь.

Перевозка и хранение

Транспорт для перевозки изделий подбирают, исходя из таких условий – размеры и расстояние до места строительства.

Хранение плит и перевозка должны осуществляться только в горизонтальном положении.

Высота штабеля не должна превышать 2,5 м. Между изделиями обязательно укладывают подкладки, толщина которых должна быть не менее 20мм.

ГОСТ 27215-87 Плиты перекрытий железобетонные ребристые высотой 400 мм для производственных зданий промышленных предприятий. Технические условия / 27215 87

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК "Трансстрой"СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

ГОСТ 28042-89 «Плиты покрытий железобетонные для зданий предприятий. Технические условия»

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭ

Ребристая или вафельная система - преимущества и недостатки

Ребристые перекрытия, состоящие из равномерно расположенных ребер, обычно поддерживаются непосредственно колоннами. Это либо односторонние перекрывающие системы, известные как ребристые плиты, либо двухсторонние ребристые системы, известные как вафельные плиты . Эта форма строительства не очень распространена из-за стоимости опалубки и низкой огнестойкости. Для достижения огнестойкости в течение 2 часов требуется плита толщиной 120 мм с минимальной толщиной ребра 125 мм для непрерывных ребер.Толщина ребра более 125 мм обычно требуется для обеспечения прочности на растяжение и сдвиг. Ребристые плиты подходят для средних и высоких нагрузок, могут перекрывать разумные расстояния, очень жесткие и особенно подходят там, где открыт потолок.

Конструкция вафельной плиты

Глубина плиты обычно варьируется от 75 до 125 мм, а ширина ребра - от 125 до 200 мм. Можно использовать расстояние между ребрами от 600 до 1500 мм. Общая глубина пола обычно варьируется от 300 до 600 мм с габаритными пролетами до 15 м в случае армирования и большего размера в случае последующего натяжения.Использование ребер в нижней части плиты снижает количество бетона и арматуры, а также вес пола. Экономия материалов будет компенсирована усложнением опалубки и укладки арматуры. Однако сложность опалубки сводится к минимуму за счет использования стандартной модульной многоразовой опалубки, обычно изготовленной из полипропилена или стекловолокна, с коническими сторонами, позволяющими снимать изоляцию.

Для ребер с шагом 1200 мм (для соответствия стандартным формам) экономичный пролет железобетонного перекрытия «L» составляет приблизительно D x 15 для одинарного пролета и D x 22 для многопролетного, где D - общая глубина перекрытия. .Односторонние ребра обычно проектируются как тавровые балки, часто проходящие в длинном направлении. На колоннах и несущих стенах требуется прочная откидная панель для сопротивления сдвигу и моменту.

Конструкция ребристой плиты

Преимущества:

  • Экономия на весе и материалах
  • Длинные пролеты
  • Привлекательный внешний вид потолка при открытии
  • Экономичен при использовании многоразовых опалубочных плит
  • Вертикальные проходы между ребрами просты.

Недостатки:

  • Глубина плиты между ребрами может регулировать степень огнестойкости.
  • Требуется специальная опалубка или опалубка собственного производства.
  • Большая высота от пола до пола.
  • С большими вертикальными проходами труднее справиться.

.

BuildingHow> Продукты> Книги> Том B> Плиты> Консоли, односторонние плиты

Сплошная плита, показанная на рисунке, с длиной пролета L = 5. 00 м и толщиной h = 160 мм, подвергается покрывающей нагрузке g e = 1,0 кН / м 2 и динамической нагрузке q = 5,0 кН / м 2 . Бетон класса С50 / 60. Рассчитайте огибающие поперечных сил и изгибающих моментов для трех плит в предельном состоянии.

Расчетная статическая нагрузка для каждой плиты составляет g d = 1.00 · 5,0 = 5,0 кН / м, а общая расчетная нагрузка p d = γ г · g + γ q · q = 1,35 · 5,0 + 1,50 · 5,0 = 14,25 кН / м.

Ручные расчеты: I = (b · h 3 ) / 12 = (1,0 · 0,16 3 ) / 12 = 341 · 10 -6 м 4

Модуль упругости для бетона C50 / 60 равен E = 37,3 ГПа.

E · I = 37.3 · 10 9 Н / м 2 · 341 · 10 -6 м 4 = 12,719 · 10 6 N · м 2

Для I 10 = I 12 = I 23 = I c , индексы распределения k коэффициентов жесткости υ составляют:

Λόγω συμμετρίας φορέα: και

.

Ребристые и вафельные

Ссылки по теме

Ребристые и вафельные плиты обеспечивают более легкую и жесткую плиту, чем эквивалентную плоскую плиту, уменьшая протяженность фундамента. Они обеспечивают очень хорошую конструкцию там, где вибрация плит является проблемой, например, в лабораториях и больницах.

Ребристые плиты состоят из широких ленточных балок, проходящих между колоннами, с узкими ребрами, перекрывающими ортогональное направление. Обычно ребра и балки имеют одинаковую глубину.Тонкая плита завершает систему.

Вафельные плиты имеют тенденцию быть глубже, чем эквивалентные ребристые плиты. Вафельные плиты имеют тонкую верхнюю часть и узкие ребра, проходящие в обоих направлениях между головками колонн или ленточными балками. Головки колонн или ленточные балки имеют ту же глубину, что и ребра.

Преимущества

  • Гибкий
  • Относительно легкий, поэтому меньше затрат на фундамент и более длинные пролеты экономичны
  • Скорость строительства
  • Довольно узкая глубина пола
  • Прочность
  • Превосходный контроль вибрации
  • Тепловая масса
  • Хорошо для интеграции услуг
  • Долговечная отделка
  • Огнестойкость

Дополнительную информацию о ребристых и вафельных плитах можно найти в публикации Concrete Center Buildings.

Добро пожаловать в Concrete Quarterly Archive ... множество выпусков, относящихся к 1947 году.

Загрузите бесплатную копию

.

Отношение пролета / глубины для бетонных балок и плит

Инженер-строитель Vol. 61A № 4, апрель 1983 г.

Отношение пролета к глубине для бетонных балок и плит

A. N. Beal, бакалавр (Eng) CEng MICE, R.H. Thomason & Partners

Сводка

В то время как обработка прогиба в CP110 в целом приветствуется как улучшение по сравнению с довольно грубыми правилами для пролета / глубины и в CP114, их очень сложно применить на практике.Проектировщик не может проверить соотношение пролета / глубины до тех пор, пока проектирование секции не будет почти завершено, и, если возникает проблема, у него / нее мало указаний относительно того, какие возможности существуют для ее решения путем перепроектирования с уменьшенным напряжением стали.

Изменяя коэффициенты модификации CP110 в единицах M / bd², а не As / bd², можно значительно упростить представление и отделить влияние фронта расчетных напряжений стали от различных M / bd². Это позволяет заранее проверить соотношение пролета / глубины при расчете, а также проясняет влияние проектирования на различные напряжения стали.Представлены таблицы для определения отношений пролета / глубины для конструкций по CP114 и CP110, а также таблица приблизительного отношения пролета / глубины для предварительного проектирования плит.

Введение

Контроль прогиба бетонных балок и плит - это приблизительный бизнес, который традиционно охватывался применением соотношений пролета / глубины. В CPI 14 [1] это простой вопрос - для соответствующее соотношение пролета / общей глубины выбирается из таблицы 13 в зависимости от концевых или краевых условий, напряжения стали и бетона и от того, проектируется ли балка или плита.Такой подход в большинстве случаев дает удовлетворительные результаты; однако при определенных обстоятельствах возникали проблемы, и в результате в CP110 [2] был предложен новый, более сложный подход. В CP110 по-прежнему указаны базовые отношения пролета к эффективной глубине (таблицы 8 и 9), но затем они изменяются с помощью ряда факторов, которые относятся к напряжению в стали и количеству стали. Существует дополнительная таблица факторов, учитывающих влияние любой присутствующей компрессионной стали (Таблица 11).

Подход CP110 обычно приветствуется как более правильный, но это очень громоздкий процесс для использования при проектировании.В идеале, требуемый пролет / эффективная глубина должна быть доступна в начале расчета, чтобы можно было выбрать правильный размер сечения в самом начале, а конструкция была быстрой и экономичной. За счет довольно грубой готовности - и - , CP114 действительно этого достигает. Однако в CP110 допустимый пролет / эффективная глубина известна только тогда, когда известны предоставленная площадь стали и напряжение стали - , поэтому его можно проверить только после того, как проектирование секции практически завершено. На практике это означает, что проектировщик трудится над двумя или тремя модификациями секции для достижения оптимальных результатов или же следует излишне консервативному подходу - сейчас довольно часто можно увидеть плиты, спроектированные без надобности с размахом / эффективной глубиной. из 20 просто для того, чтобы избежать проблем, возникающих позже при проектировании.Поскольку уменьшенное напряжение стали увеличивает допустимое соотношение, но сопутствующее увеличение площади стали снижает допустимое соотношение, разработчику также далеко не ясно, какие возможности (если таковые имеются) существуют для решения проблемы прогиба путем проектирования с использованием стали с уменьшенным содержанием стресс.

Подход, позволяющий определять глубину сечения на ранних этапах расчета и проясняющий взаимосвязь между расчетным напряжением стали и допустимым пролетом / эффективной глубиной, будет явным улучшением.

Как соотношение пролета / глубины контролирует отклонение?

Для симметричной упругой балки, поддерживающей распределенную нагрузку, прогиб может быть рассчитан исключительно на основе экстремального напряжения изгиба волокна, глубины сечения и пролета. Если допустимое напряжение изгиба известно, а предел прогиба составляет некоторую долю пролета (например, L / 360), то можно установить постоянное соотношение пролета / глубины, которое обеспечит соблюдение этого предела. Предел пролета / глубины напрямую зависит от напряжения изгиба.

Таким образом можно спроектировать стальные балки

, и соответствующие соотношения пролета / глубины указаны в таблице в BCSA / Constrado Handbook [3] (таблица, стр. 16). Однако в железобетоне ситуация сложнее:

* не ведет себя строго эластично;

* глубина нейтральной оси не постоянна, но зависит от количества арматуры;

* Хотя бетон в зоне растяжения мало влияет на предел прочности, он может значительно уменьшить прогиб.

В этих обстоятельствах коэффициенты, приведенные в CP114, Таблица 13, могут рассматриваться как очень приблизительные; изменяющиеся коэффициенты в таблице 10 CP110 предназначены для более полного охвата возможных вариаций. Однако, как указывалось ранее, это достигается только за счет больших неудобств конструкции.

Упрощенное отношение пролета CP110 к эффективной глубине

Коэффициенты, указанные в таблице 10 CP110, зависят от напряжения стали и площади стали.Для прямоугольного сечения их можно пересчитать и представить в единицах M / bd², а не 100As / bd для заданного напряжения стали. (Коэффициенты рассчитываются по формуле 1 / (0,225 + 0,00322fs - 0,625 log (bd / 100As)) с примененным пределом 20, где fs - растягивающее напряжение стали.) Результаты приведены в таблице 1 для 140N. / мм² (низкоуглеродистая сталь CP114), 145 Н / мм² (низкоуглеродистая сталь CP110), 230 Н / мм² (высокопрочная сталь CP114) и 267 Н / мм² (высокопрочная сталь CP110). M - рабочий (неучтенный) момент, но конечное (факторное) значение можно принять равным 1.В 5 раз больше.

Если мы вычленим коэффициенты 1,25, 1,24, 1,04 и 0,96 из значений для 140 Н / мм², 145 Н / мм², 230 Н / мм² и 267 Н / мм², соответственно, результаты будут такими, как в Таблице 2.

Можно видеть, что один набор коэффициентов можно использовать для всех напряжений стали с небольшой ошибкой, при этом базовые отношения пролета / глубины указаны для основных расчетных напряжений стали.Это позволит выбрать сечение перед проектированием арматуры и ясно покажет влияние изменения расчетного напряжения стали.

Компрессионная арматура редко используется для контроля прогиба; он почти всегда используется как средство увеличения момента сопротивления секции, когда арматура тяжелая. CP110 Таблицы 10 (сталь на растяжение) и 11 (сталь на сжатие) показывают, что, когда присутствует сталь с высоким пределом текучести на растяжение более 0,75%, любое снижение коэффициента, вызванное увеличением стали на растяжение, будет приблизительно отменено, если соответствующее количество сжатия была представлена ​​сталь.Таким образом, для стали с растяжением 0,75% при 238 Н / мм² (fy = 410 Н / мм²) коэффициент равен 1,09; для 2% стали на растяжение плюс 1,25% стали на сжатие коэффициент будет 0,84 x 1,29 = 1,08. Аналогично, для стали 1,5% при 238 Н / мм² коэффициент равен 0,9; для 2% стали на растяжение и 0,5% стали на сжатие коэффициент будет 0,84 x 1,14 = 0,96. Если вспомнить, что компрессионная сталь используется в качестве средства контроля прогиба очень редко (и дорого!), Становится очевидным, что в этих случаях было бы вполне достаточно рассчитать эффективное M / bd² для прогиба как (M- Mc) / bd ², где Mc - моментное сопротивление сжатой стали.Это достаточно быстро и точно для всех обычных целей при условии, что результирующее эффективное значение M / bd² не будет меньше 1,5. CP110 Table 11, конечно, может использоваться вместо нее, если это более удобно.

Второе соображение, связанное с компрессионной сталью, заключается в том, что любая сильно армированная балка обязательно будет иметь звенья и, следовательно, несколько резьбовых стержней в зоне сжатия. Таким образом, несмотря на то, что соотношение пролета / глубины для одинарной армированной балки с M / bd² = 4 было представлено, оно представляет только академический интерес и может быть исключено из практических таблиц.Тем не менее, это может быть необходимо, если эффект сжатия стали рассчитывается с использованием таблицы 11 CP110, и поэтому он включен в скобки в следующих таблицах.

Изложенный подход дает результаты, которые полностью согласуются с требованиями CP110, и поэтому таблицы 3 и 4 могут использоваться непосредственно для проектирования вместо CP110, таблиц 8, 9, 10 и 11, с определенными преимуществами в удобстве и скорости для проектировщика.

ПРИМЕЧАНИЕ. Для пролетов более 10 м они должны быть уменьшены в 10 м / пролет.

ПРИМЕЧАНИЕ: Если присутствует компрессионная сталь, ее момент сопротивления можно вычесть при расчете Mu / bd² для прогиба, при условии, что результирующее значение Mu / bd² не менее 2,5. В качестве альтернативы можно использовать таблицу 11 CP110.

Требования

CP114 быстро и легко применить в существующем виде, но в некоторых случаях они считаются подозрительными, а в других могут быть чрезмерно ограничительными. Таблицы 5 и 6 предоставляют удобные средства проверки конструкции CP114 на соответствие критериям CP110.

ПРИМЕЧАНИЕ: Для пролетов более 10 м их следует уменьшить в 10 м / пролет.

ПРИМЕЧАНИЕ: Если присутствует компрессионная сталь, ее момент сопротивления может быть вычтен при расчете M / bd² для прогиба, при условии, что результирующее M / bd² не меньше 1,5. В качестве альтернативы можно использовать таблицу 11 CP110.

Т- Балки и ребристые плиты

Поскольку вышеизложенное состоит только из пересмотренного представления данных в CP110, оно может применяться непосредственно для проектирования этого Кодекса.Однако есть еще один аспект конструкции отклонения, который следует учитывать - , и здесь можно улучшить подход CP110. Это касается балки Т- и оребрения.

Пункт 3.3.8.2 CP110

требует, чтобы допустимое отношение пролета к эффективной глубине было уменьшено до 0,8 от нормального значения для балок с шириной ребра br менее 0,3 ширины полки b. Это постоянное сокращение вряд ли будет полностью правильным как для балок с легким армированием (где важна жесткость бетона), так и с балками с сильным усилением (где это не так).

На отклонение влияют три вещи:

  • смещение нейтральной оси при разном% стали;
  • кривизна усадки;
  • жесткость бетона в зоне растяжения.

(1) и (2) более или менее независимы от br / b (при условии, что нейтральная ось находится во фланце). (3) можно считать прямо пропорциональным br / b. Таким образом, если значения сведены в таблицу для br / b = 0 и br / b = 1, промежуточные значения могут быть получены линейной интерполяцией.

В статье, где были получены таблицы пролета / глубины CP110, Биби [4] вычислил эффект игнорирования усиления зоны растяжения бетона. В результате множители уменьшаются в диапазоне от 0,75 (0,25% стали) до 0,98 (3% стали). Благодаря упрощенному представлению, приведенному здесь, они теперь могут быть включены в практические таблицы вместе с рассчитанными ранее. Они представлены в таблице 7.

Ширина промежуточных ребер может быть интерполирована.

Как видно, коэффициент уменьшения CP110, равный 0,8 для br / b = 0,3, является разумным для нижнего диапазона значений, но более консервативным для высоких значений (M / bd²> 1,0). С более простым представлением, приведенным здесь для факторов модификации, довольно легко представить и использовать эту более точную трактовку. Казалось бы, это улучшение метода, приведенного в CP110.

Отношение пролета к эффективной глубине для предварительного проектирования

Прогиб влияет на конструкцию балок только в некоторых случаях, и для них указанные базовые коэффициенты должны быть удовлетворительными для предварительного проектирования.Однако конструкция плит почти всегда зависит от прогиба, и очень важно иметь возможность оценить толщину плиты на ранней стадии подготовки схемы. Хотя подход, изложенный в этой статье, более удобен для проектирования, чем в CP110, ему все еще не хватает простой непосредственности отношения пролета плиты / толщины в CP114 для подготовки структурной схемы. Толщина плиты зависит от расчетного напряжения стали, а также от приложенной нагрузки.

В таблице 8 приведены приблизительные отношения пролета к эффективной глубине для различных форм конструкции и нагрузки для целей предварительного проектирования.Толщина плиты, определенная на основе этих данных, не потребует небольшой корректировки в окончательном проекте. Они были рассчитаны для пролетов до 10 м как для «легкой» налагаемой нагрузки 2,5 кН / м² (эквивалент внутренней нагрузки плюс легкие перегородки на непосредственно обработанной плите), так и для «тяжелой» наложенной нагрузки 10 кН / м². (эквивалент нагрузки складского помещения 7,5 кН / м² плюс стяжка 5 кН / м² плюс легкие перегородки). Значения для непрерывных плит основаны на моментах из таблицы 15 CP114, а значения для двухсторонних плит и плоских плит основаны на моментах из таблиц 12, 13 и 18 CP110.Предполагается, что (а) прочность стали составляет 460 Н / мм² или 425 Н / мм² в зависимости от размера стержня, и (b) покрытие составляет 15 мм или размер стержня, в зависимости от того, что больше. Значения были рассчитаны для плит толщиной 100 мм, 200 мм и 300 мм, и представленные результаты представляют собой округленные средние значения отношения допустимого пролета к эффективной глубине, определенного в соответствии с таблицами 3, 4, 5 и 6 настоящего документа. Принимая во внимание разницу между общей и эффективной глубиной, можно видеть, что отношения довольно близки к значениям CP114, немного ниже для простых опор и выше для непрерывных плит.

ПРИМЕЧАНИЯ:

  • Двусторонние плиты рассчитаны для квадратной панели. Для панели 2 x 1 следует использовать значение односторонней панели и значения интерполировать для промежуточных пропорций.
  • Конструкция плоской плиты должна основываться на размерах большего пролета. Для наружных панелей, примыкающих к стенам, используйте 85% - 90% от указанного соотношения.
  • Для ребристых плит используйте 85% - 90% от указанных соотношений.
  • Для расчета напряжений из низкоуглеродистой стали коэффициенты можно увеличить на 15%.

Благодарности

Выражаем благодарность доктору А. В. Биби из Ассоциации цемента и бетона за его сотрудничество и помощь, а также господину В. Е. А. Скиннеру.

Список литературы

1. CP114 Использование железобетона в конструкциях зданий, Лондон, Британский институт стандартов, 1969.

2. CP110 Использование бетона в конструкциях: Часть 1, Лондон, Британский институт стандартов, 1972 г.

3. Справочник по металлоконструкциям - свойства и таблицы допустимых нагрузок , BCSA & Constrado, Лондон, 1978.

4. А. В. Биби: «Модифицированные предложения по контролю прогибов с помощью отношения пролета к эффективной глубине», Технический отчет, Ассоциация цемента и бетона, апрель 1971 г.

«Верулам», инженер-строитель, Vol.62А № 3, март 1984 г.

Контроль прогиба в железобетоне

Короткая статья «Отношения пролета / глубины для бетонных балок и плит» г-на Аласдера Била, опубликованная в журнале «Structural Engineer» за апрель 1983 г., касалась обработки прогиба в CP 110 и 114. Г-н Фрэнсис Бил написал нам, выражая Большой интерес к этому документу и предположение, что в Таблицу 8 потребовались некоторые изменения. В своем письме, которое цитируется ниже, г-н Бил представил пересмотренную таблицу, показывающую в целом более низкие значения рекомендуемых соотношений пролета / глубины, вместе с некоторыми дополнительными комментариями:

Я воспользовался возможностью изменить некоторые рисунки, чтобы отразить состояние торцевого пролета или угловой панели во всех случаях, так что доступен готовый инструмент для проектирования, а в случае плоских перекрытий я предположил, что они опираются на колонны.

Мое внимание было привлечено к необходимости значимого сравнения CP114 и CP110 из-за кажущейся невозможности спроектировать плоские плиты для CP110 и получить результаты, к которым привыкли. Плоская плита, разработанная для CP114, требует плиты 250, но для требований CP110 будет иметь толщину 300 при использовании стали 460.

Я использовал нагрузку 10 кН / м² для сравнения, потому что она достаточно распространена, разрешена CP114 (то есть любая нагрузка) и устраняет искажение при более низких нагрузках, вызванное точкой отсечки таблиц CP110.

Следует отметить, что во всех случаях CP110 является более обременительным, и эффект может быть очень большим (увеличение толщины плиты на 25%) для двухсторонних плит с простой опорой .

Во время написания, я думаю, настало время упомянуть о практическом эффекте Таблицы 19, «Номинальное покрытие до усиления» CP110. Чтобы получить прочное покрытие в плитах (15 мм), необходимо использовать бетон марки 30, фактически как минимальную марку бетона, независимо от того, требуется ли это по другим соображениям или нет.Можно спроектировать очень большое количество рабочих мест с использованием бетона 21 Н / мм². Если принять во внимание другие соображения, это означает, что в типичном контракте на плоскую плиту будет использоваться примерно на 40 Н / мм² больше цемента при проектировании по CP110.

Мистер Бил завершает свое письмо вопросом, не пора ли выбросить CP114. Мы передали поднятые вопросы г-ну Билу для комментариев. Он ответил следующее:

(1) Более низкие отношения пролета к глубине, вычисленные мистером Билом, в основном связаны с использованием им условий «концевого пролета» и «углового пролета» для непрерывных плит.На значения для более низких нагрузок также влияет тот факт, что в таблице 10 CP110 приведены значения множителя только до процентного содержания стали 0,25%, хотя предел множителя 2,0 достигается только при гораздо меньшем процентном содержании, чем этот для стали с высоким пределом текучести. Использование истинных значений для стали менее 0,25% во многих случаях дает гораздо лучшие результаты.

(2) Это хороший вопрос, должны ли соотношения для непрерывных плит основываться на внутренних или краевых отсеках. Испытательные расчеты показывают, что подходящие соотношения для концевых и угловых пролетов непрерывных плит составляют от 87% до 93% от соотношения для внутренних пролетов.Лучшим решением может быть табулирование значений внутренних пролетов с учетом того, что соотношения для концевых пролетов и угловых пролетов непрерывных плит могут быть приняты равными 90% от этих значений с незначительной ошибкой.

(3) При сравнении CP110 с CP114, нагрузка, приложенная мистером Билом в 10 кН / м², является высокой, а соотношение толщина / эффективная глубина 1,15 является более подходящим.

(4) Вероятно, было бы лучше, если бы, как предполагает г-н Бил, можно было указать точное, а не приблизительное соотношение пролета / глубины.Это можно сделать, если таблица представлена ​​с точки зрения общей, а не наложенной нагрузки на плиту; Биби [1] представил предложения такого рода, и они были включены в проект пересмотренной CP110 [2]. Однако ими все еще довольно неудобно пользоваться. Лучшим решением может быть табулирование отношений пролета / глубины для общих (статических + динамических) нагрузок (скажем) 5, 10, 20 кН / м² при предпочтительном рабочем напряжении стали. Рассчитанные значения представлены в Таблице Vl.

Примечания:

(i) Двусторонние плиты рассчитаны для квадратной панели.Для панели 2 x 1 следует использовать значение односторонней панели и значения, интерполированные для промежуточных пропорций.

(ii) Коэффициенты для всех непрерывных плит указаны для внутренних пролетов. Для концевых и угловых проемов передаточные числа должны быть уменьшены до 90% от заявленных значений.

(iii) Для конструкции с напряжениями из низкоуглеродистой стали коэффициенты могут быть увеличены на 15%. Для стали с пределом текучести 425 Н / мм², с рабочим напряжением 210 Н / мм² (CP114), 247 Н / мм² (CP110), соответствующие соотношения могут быть увеличены на 3%.

(iv) Для ребристой плиты это соотношение следует уменьшить на 85– 90%, в зависимости от ширины ребра.

(v) Конструкция плоских перекрытий должна основываться на размерах более длинных панелей.

(vi) Для не охваченных нагрузок и схем конструкция должна быть основана на таблицах 3 или 5 и 7 в исходном документе.

(5) Если мы возьмем общую (постоянную + приложенную) нагрузку на плиту 10 кН / м² в качестве типовой и соотношение толщины / эффективной глубины 1,15 и рассмотрим угловые пролеты и концевые пролеты, как предлагает г-н Бил, тогда сравнение с CP114, с Напряжение из низкоуглеродистой стали (140 Н / мм²) дает результаты, показанные в Таблице V2 для соотношений пролета / толщины.

Как видно, отличия небольшие. Если, как обычно, значения CP114 для высокопрочной стали приняты равными 85% от значений для низкоуглеродистой стали, различия здесь также будут небольшими. (Плоские плиты для CP114 являются аномалией, где, по-видимому, не делались поправки на повышенные напряжения стали.) Однако, как указывает г-н Бил, значения CP110 становятся более консервативными при больших нагрузках.

(6) Влияние CP110 на толщину плиты, покрытие и бетонные смеси, упомянутые г-ном Билом, поднимают несколько новых вопросов, некоторые из которых выходят за рамки данной статьи.Некоторые изменения в CP110 понятны, а другие нет - , поэтому его увеличение толщины сляба в основном требуется для уравновешивания влияния повышенных эксплуатационных напряжений стали на прогиб. Эти повышенные эксплуатационные нагрузки стали также увеличивают покрытие, необходимое для соответствующей огнестойкости - , таким образом, экономия стали CP110 в некоторой степени компенсируется увеличением количества бетона. Однако требование CP110 о повышенном номинальном укрытии с использованием бетона 21 Н / мм², используемого внутри помещений, трудно понять ввиду отсутствия наблюдаемых проблем с обслуживанием (вероятно, большинство используемых плит имеют бетон 1: 2: 4 (21 Н / мм²), с крышкой ½ дюйма (13 мм).Проект пересмотра CP110 пошел дальше - было указано, что это фактически запретит бетон 1: 2: 4 в строительных работах!

Следует ли выбросить CP114? Это гораздо более широкая дискуссия, включающая множество вопросов, некоторые из которых обсуждались в другом месте [3]. Если представленные здесь предложения будут приняты, они могут быть использованы как в CP110, так и в CP114.

Список литературы

1. Биби, A.W .: «Отношения пролета / эффективной глубины: преобразование метода CP110», Concrete, 13, No.2 февраля 1979 г.

2. CSB / 39 Использование бетона в конструкциях, Лондон, Британский институт стандартов, февраль 1982 г.

3. Бил, А. Н .: «Что не так с расчетом коэффициента нагрузки?», Proc. ICE, Часть 1, ноябрь 1979 г.

.

Поперечное сечение вафельной плиты и детали армирования - Engineering Feed

Поперечное сечение вафельной плиты и детали армирования


Вафельная плита - это нечто связанное с ребристым полом. Они состоят из равномерно расположенных ребер, обычно поддерживаемых непосредственно колоннами. Это либо односторонние перекрытия (известные как ребристая плита), либо двухсторонние ребристые системы (вафельные плиты). Деталь армирования поперечного сечения железобетонной вафельной плиты (ребристой плиты) включает ребристую (балочную) арматуру, проволочную сетку верхней части плиты, размеры вафель, ширину и глубину пустот, толщину плиты.

Посмотрите видео и узнайте больше об этом!

Источник и источник 2

.

Плиты

Задача

Дополнительные указания

Публикация

Стандартный

Определить расчетный ресурс

Как спроектировать бетонные конструкции по Еврокоду 2 - Глава 2: Начало работы

NA согласно BS EN 1990 Таблица NA.2,1

Оценка действий на плите

Как проектировать бетонные конструкции по Еврокоду 2 - Глава 2: Начало работы

BS EN 1991 (10 частей) и национальные приложения

Определить, какие комбинации действий применяются

Как проектировать бетонные конструкции в соответствии с Еврокодом 2 - Глава 1: Введение в Еврокоды

NA по BS EN 1990 Таблицы NA.A1.1 и NA.A1.2 (B)

Определить погрузочные устройства

Как спроектировать бетонные конструкции по Еврокоду 2 - Глава 2: Начало работы

NA согласно BS EN 1992–1–1

Проверить требования к крышке для соответствующего периода огнестойкости

Как проектировать бетонные конструкции в соответствии с Еврокодом 2 - Глава 2: Начало работы и таблица 2

Утвержденный документ B.BS EN 1992–1–2: Раздел 5

Рассчитать мин. покрытие для требований прочности, огнестойкости и сцепления

Как спроектировать бетонные конструкции по Еврокоду 2 - Глава 2: Начало работы

BS EN 1992–1–1 Класс 4.4.1

Анализ конструкции для получения критических моментов и поперечных сил

Как проектировать бетонные конструкции в соответствии с Еврокодом 2 - Глава 2: Начало работы и таблица 3

BS EN 1992–1–1 раздел 5

Расчетная арматура на изгиб

Как спроектировать бетонные конструкции по Еврокоду 2 - Глава 3: Плиты и рисунок 1

BS EN 1992–1–1 раздел 6.1

Проверить прогиб

Как проектировать бетонные конструкции по Еврокоду 2 - Глава 3: Плиты и рисунок 3

BS EN 1992–1–1 раздел 7.4

Проверить усилие сдвига

Как проектировать бетонные конструкции по Еврокоду 2 - Глава 3: Плиты и таблица 7

BS EN 1992–1–1 раздел 6.2

Проверить расстояние между стержнями

Как спроектировать бетонные конструкции по Еврокоду 2 - Глава 2: Начало работы

BS EN 1992–1–1 раздел 7.3

.

Смотрите также